Question Number 198772 by ajfour last updated on 24/Oct/23
$${x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$
Commented by Frix last updated on 24/Oct/23
$$\mathrm{Usually}\:\mathrm{we}\:\mathrm{first}\:\mathrm{try}\:\mathrm{factors}\:\mathrm{of}\:{d}.\:\mathrm{The}\:\mathrm{next} \\ $$$$\mathrm{step}\:\mathrm{would}\:\mathrm{be}\:\mathrm{substituting}\:{x}={t}−\frac{{a}}{\mathrm{4}}\:\mathrm{to} \\ $$$$\mathrm{reach}\:{t}^{\mathrm{4}} +{pt}^{\mathrm{2}} +{qt}+{r}\:\mathrm{and}\:\mathrm{now}\:\mathrm{try}\:\mathrm{to}\:\mathrm{find} \\ $$$$\mathrm{2}\:\mathrm{square}\:\mathrm{factors}\:\left({t}^{\mathrm{2}} −{ut}−{v}\right)\left({t}^{\mathrm{2}} +{ut}−{w}\right)\:\mathrm{by} \\ $$$$\mathrm{matching}\:\mathrm{the}\:\mathrm{constants}.\:\mathrm{This}\:\mathrm{leads}\:\mathrm{to} \\ $$$${w}^{\mathrm{3}} +\alpha{w}^{\mathrm{2}} +\beta{w}+\gamma=\mathrm{0};\:\mathrm{if}\:\mathrm{this}\:\mathrm{has}\:\mathrm{at}\:\mathrm{least}\:\mathrm{1} \\ $$$$\mathrm{useable}\:\mathrm{solution}\:\mathrm{an}\:\mathrm{exact}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{given}\:\mathrm{equation}\:\mathrm{makes}\:\mathrm{sense};\:\mathrm{otherwise}\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{better}\:\mathrm{to}\:\mathrm{approximate}. \\ $$