Menu Close

Find-the-value-of-m-given-that-the-roots-of-x-4-15x-3-70x-2-120x-m-0-form-a-geometric-progression-




Question Number 198932 by necx122 last updated on 25/Oct/23
Find the value of m given that the  roots of x^4 −15x^3 +70x^2 −120x+m=0  form a geometric progression.
Findthevalueofmgiventhattherootsofx415x3+70x2120x+m=0formageometricprogression.
Answered by AST last updated on 25/Oct/23
m=abcd=(br^(−1) )b(br)(br^2 )=b^4 r^2   a+b+c+d=15⇒a(1+r+r^2 +r^3 )=15...(i)  ab+bc+cd+da+ca+bd=70  ⇒a^2 (r+r^3 +r^5 +r^3 +r^2 +r^4 )=70...(ii)  abc+bcd+acd+abd=b^3 (1+r^3 +r^2 +r)=120...(iii)  (i)&(iii)⇒((120)/b^3 )=((15)/a)=8a=b^3   b^3 =a^3 r^3 =8a⇒a^2 r^3 =8  ⇒m=b^4 r^2 =a^4 r^6 =(a^2 r^3 )^2 =64
m=abcd=(br1)b(br)(br2)=b4r2a+b+c+d=15a(1+r+r2+r3)=15(i)ab+bc+cd+da+ca+bd=70a2(r+r3+r5+r3+r2+r4)=70(ii)abc+bcd+acd+abd=b3(1+r3+r2+r)=120(iii)(i)&(iii)120b3=15a=8a=b3b3=a3r3=8aa2r3=8m=b4r2=a4r6=(a2r3)2=64

Leave a Reply

Your email address will not be published. Required fields are marked *