Question Number 198902 by necx122 last updated on 25/Oct/23
$${Given}\:{that}\:{k}^{\mathrm{2}} −\mathrm{3}{k}+\mathrm{5}=\mathrm{0},\:{determine} \\ $$$${the}\:{value}\:{of}\:{k}^{\mathrm{4}} −\mathrm{6}{k}^{\mathrm{3}} +\mathrm{9}{k}^{\mathrm{2}} −\mathrm{7} \\ $$
Answered by witcher3 last updated on 25/Oct/23
$$\left(\mathrm{k}^{\mathrm{2}} −\mathrm{3k}+\mathrm{5}\right)\left(\mathrm{k}^{\mathrm{2}} −\mathrm{3k}−\mathrm{5}\right)+\mathrm{18}=\mathrm{k}^{\mathrm{4}} −\mathrm{6k}^{\mathrm{3}} +\mathrm{9k}^{\mathrm{2}} −\mathrm{7} \\ $$$$=\mathrm{0}.\left(\mathrm{k}^{\mathrm{2}} −\mathrm{3k}−\mathrm{5}\right)+\mathrm{18}=\mathrm{18} \\ $$
Commented by necx122 last updated on 25/Oct/23
Thank you so much sir
Commented by witcher3 last updated on 25/Oct/23
$$\mathrm{y}'\mathrm{re}\:\mathrm{welcom} \\ $$
Answered by Rasheed.Sindhi last updated on 25/Oct/23
$${k}^{\mathrm{2}} −\mathrm{3}{k}+\mathrm{5}=\mathrm{0};{k}^{\mathrm{4}} −\mathrm{6}{k}^{\mathrm{3}} +\mathrm{9}{k}^{\mathrm{2}} −\mathrm{7}=? \\ $$$$\Rightarrow{k}^{\mathrm{2}} =\mathrm{3}{k}−\mathrm{5} \\ $$$$\Rightarrow{k}^{\mathrm{3}} =\mathrm{3}{k}^{\mathrm{2}} −\mathrm{5}{k}=\mathrm{3}\left(\mathrm{3}{k}−\mathrm{5}\right)−\mathrm{5}{k}=\mathrm{4}{k}−\mathrm{15} \\ $$$$\Rightarrow{k}^{\mathrm{4}} =\mathrm{4}{k}^{\mathrm{2}} −\mathrm{15}{k}=\mathrm{4}\left(\mathrm{3}{k}−\mathrm{5}\right)−\mathrm{15}{k}=−\mathrm{3}{k}−\mathrm{20} \\ $$$${k}^{\mathrm{4}} −\mathrm{6}{k}^{\mathrm{3}} +\mathrm{9}{k}^{\mathrm{2}} −\mathrm{7} \\ $$$$=\left(−\mathrm{3}{k}−\mathrm{20}\right)−\mathrm{6}\left(\mathrm{4}{k}−\mathrm{15}\right)+\mathrm{9}\left(\mathrm{3}{k}−\mathrm{5}\right)−\mathrm{7} \\ $$$$=−\mathrm{3}{k}−\mathrm{20}−\mathrm{24}{k}+\mathrm{90}+\mathrm{27}{k}−\mathrm{45}−\mathrm{7} \\ $$$$=\mathrm{70}−\mathrm{52}=\mathrm{18} \\ $$