Menu Close

Given-that-k-2-3k-5-0-determine-the-value-of-k-4-6k-3-9k-2-7-




Question Number 198902 by necx122 last updated on 25/Oct/23
Given that k^2 −3k+5=0, determine  the value of k^4 −6k^3 +9k^2 −7
Giventhatk23k+5=0,determinethevalueofk46k3+9k27
Answered by witcher3 last updated on 25/Oct/23
(k^2 −3k+5)(k^2 −3k−5)+18=k^4 −6k^3 +9k^2 −7  =0.(k^2 −3k−5)+18=18
(k23k+5)(k23k5)+18=k46k3+9k27=0.(k23k5)+18=18
Commented by necx122 last updated on 25/Oct/23
Thank you so much sir
Commented by witcher3 last updated on 25/Oct/23
y′re welcom
yrewelcom
Answered by Rasheed.Sindhi last updated on 25/Oct/23
k^2 −3k+5=0;k^4 −6k^3 +9k^2 −7=?  ⇒k^2 =3k−5  ⇒k^3 =3k^2 −5k=3(3k−5)−5k=4k−15  ⇒k^4 =4k^2 −15k=4(3k−5)−15k=−3k−20  k^4 −6k^3 +9k^2 −7  =(−3k−20)−6(4k−15)+9(3k−5)−7  =−3k−20−24k+90+27k−45−7  =70−52=18
k23k+5=0;k46k3+9k27=?k2=3k5k3=3k25k=3(3k5)5k=4k15k4=4k215k=4(3k5)15k=3k20k46k3+9k27=(3k20)6(4k15)+9(3k5)7=3k2024k+90+27k457=7052=18

Leave a Reply

Your email address will not be published. Required fields are marked *