Menu Close

p-x-1-p-x-1-4x-2-2x-10-p-x-




Question Number 198850 by mustafazaheen last updated on 25/Oct/23
  p(x+1)+p(x−1)=4x^2 −2x+10  p(x)=?
p(x+1)+p(x1)=4x22x+10p(x)=?
Answered by Rasheed.Sindhi last updated on 25/Oct/23
Let P(x)=ax^2 +bx+c  P(x+1)+P(x−1)  =(a(x+1)^2 +b(x+1)+c)−(a(x−1)^2 +b(x−1)+c)  =a( (x+1)^2 +(x−1)^2 )+b( (x+1)+(x−1))+2c  =2a(x^2 +1)+2b(x)+2c  =2ax^2 +2a+2bx+2c=4x^2 −2x+10  2a=4, 2b=−2, 2a+2c=10  a=2 ,b=−1 , c=5−a=5−2=3  P(x)=2x^2 −x+3
LetP(x)=ax2+bx+cP(x+1)+P(x1)=(a(x+1)2+b(x+1)+c)(a(x1)2+b(x1)+c)=a((x+1)2+(x1)2)+b((x+1)+(x1))+2c=2a(x2+1)+2b(x)+2c=2ax2+2a+2bx+2c=4x22x+102a=4,2b=2,2a+2c=10a=2,b=1,c=5a=52=3P(x)=2x2x+3
Commented by mr W last updated on 25/Oct/23
are there other possibilities?   for example  p(x)=2x^2 −x+3+f(x)  with f(x)=−f(x−2)  but i′m not sure if such a f(x) exists.
arethereotherpossibilities?forexamplep(x)=2x2x+3+f(x)withf(x)=f(x2)butimnotsureifsuchaf(x)exists.
Commented by mr W last updated on 25/Oct/23
great!  that means   p(x)=2x^2 −x+3+k sin (((2n+1)πx)/2)  is also a solution.
great!thatmeansp(x)=2x2x+3+ksin(2n+1)πx2isalsoasolution.
Commented by Rasheed.Sindhi last updated on 25/Oct/23
 I′m also not sure sir.
Imalsonotsure\boldsymbolsir.
Commented by Frix last updated on 25/Oct/23
f(x)=sin (((2n+1)πx)/2)
f(x)=sin(2n+1)πx2
Commented by witcher3 last updated on 25/Oct/23
f(x)=−f(x−2)  f(x−2)=−f(x−4)=−f(x)  ⇒f(y)=f(y+4),y periodic 4  sin((π/2)x)  sin((π/2)(x−2))=sin(((πx)/2)−π)=−sin(((πx)/2))..worck
f(x)=f(x2)f(x2)=f(x4)=f(x)f(y)=f(y+4),yperiodic4sin(π2x)sin(π2(x2))=sin(πx2π)=sin(πx2)..worck
Commented by mr W last updated on 26/Oct/23
great!
great!great!

Leave a Reply

Your email address will not be published. Required fields are marked *