Menu Close

prove-lim-n-n-n-x-n-x-1-




Question Number 198855 by mokys last updated on 25/Oct/23
prove : lim_(n→∞)  ((n!)/(n^x (n−x)!)) = 1
prove:limnn!nx(nx)!=1
Answered by witcher3 last updated on 25/Oct/23
((Γ(n+1))/(Γ(n+1−x)n^x ))  Γ(z)=(√(2π)).z^(z−(1/2)) e^(−z)   ((Γ(n+1))/(n^x (n−x)!))∼(((√(2π))(n+1)^(n+(1/2)) e^(−(n+1)) )/(n^x (√(2π)).(n+1−x)^(n+(1/2)−x) e^(−(n+1−x)) ))  =lim_(n→∞) .(e^(−x) /n^x ).(((n+1)/(n+1−x)))^(n+(1/2)) .(1/((n+1−x)^(−x) ))  (((n+1)/(n+1−x)))^(n+(1/2)) =e^((n+(1/2))ln(1+(x/(n+1−x))))   =e^((n+(1/2)).((x/(n+1−x))−(1/2)((x/(n+1−x)))^2 +o((1/n^2 )))   ∼e^x   n^x .(n+1−x)^(−x) =((n/(n+1−x)))^x   =lim_(n→∞) e^(xln(1+((x−1)/(n+1−x)))) →1  (e^(−x) /n^x ).(((n+1)/(n+1−x)))^(n+(1/2)) .(1/((n+1−x)^(−x) ))  =(((n+1)/(n+1−x)))^(n+(1/2)) .e^(−x) .((n/(n+1−x)))^(−x) ∼e^x .e^(−x) .1∼1  ⇒lim_(n→∞) .((Γ(n+1))/(Γ(n+1−x).n^x ))=1
Γ(n+1)Γ(n+1x)nxΓ(z)=2π.zz12ezΓ(n+1)nx(nx)!2π(n+1)n+12e(n+1)nx2π.(n+1x)n+12xe(n+1x)=limn.exnx.(n+1n+1x)n+12.1(n+1x)x(n+1n+1x)n+12=e(n+12)ln(1+xn+1x)=e(n+12).(xn+1x12(xn+1x)2+o(1n2)exnx.(n+1x)x=(nn+1x)x=limenxln(1+x1n+1x)1exnx.(n+1n+1x)n+12.1(n+1x)xMissing \left or extra \rightlimn.Γ(n+1)Γ(n+1x).nx=1
Commented by mokys last updated on 25/Oct/23
thank you sir
thankyousir
Commented by witcher3 last updated on 27/Oct/23
Withe Pleasur
WithePleasur

Leave a Reply

Your email address will not be published. Required fields are marked *