Menu Close

Question-198849




Question Number 198849 by sonukgindia last updated on 25/Oct/23
Commented by mr W last updated on 25/Oct/23
for a,b, c ∈R no solution!
$${for}\:{a},{b},\:{c}\:\in{R}\:{no}\:{solution}! \\ $$
Answered by AST last updated on 25/Oct/23
a+b+c=30;(ab+bc+ca)=((abc)/4);abc=1000  ⇒ab+bc+ca=250  a,b,c are roots of x^3 −30x^2 +250x−1000=0  ⇒(a,b,c)=(20,5+5i,5−5i) upto permutations.
$${a}+{b}+{c}=\mathrm{30};\left({ab}+{bc}+{ca}\right)=\frac{{abc}}{\mathrm{4}};{abc}=\mathrm{1000} \\ $$$$\Rightarrow{ab}+{bc}+{ca}=\mathrm{250} \\ $$$${a},{b},{c}\:{are}\:{roots}\:{of}\:{x}^{\mathrm{3}} −\mathrm{30}{x}^{\mathrm{2}} +\mathrm{250}{x}−\mathrm{1000}=\mathrm{0} \\ $$$$\Rightarrow\left({a},{b},{c}\right)=\left(\mathrm{20},\mathrm{5}+\mathrm{5}{i},\mathrm{5}−\mathrm{5}{i}\right)\:{upto}\:{permutations}. \\ $$
Answered by mr W last updated on 25/Oct/23
((a+b+c)/3)=10  ⇒a+b+c=30  ((abc))^(1/3) =10  ⇒abc=1000  (3/((1/a)+(1/b)+(1/c)))=12  ((3abc)/(ab+bc+ca))=12  ab+bc+ca=((3abc)/(12))=((3×1000)/(12))=250  ⇒ab+bc+ca=250    a,b,c are roots of x^3 −30x^2 +250x−1000=0  (x−20)(x^2 −10x+50)=0  ⇒x=20, 5±5i  ⇒a,b,c=(20, 5+5i, 5−5i)
$$\frac{{a}+{b}+{c}}{\mathrm{3}}=\mathrm{10} \\ $$$$\Rightarrow{a}+{b}+{c}=\mathrm{30} \\ $$$$\sqrt[{\mathrm{3}}]{{abc}}=\mathrm{10} \\ $$$$\Rightarrow{abc}=\mathrm{1000} \\ $$$$\frac{\mathrm{3}}{\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}}=\mathrm{12} \\ $$$$\frac{\mathrm{3}{abc}}{{ab}+{bc}+{ca}}=\mathrm{12} \\ $$$${ab}+{bc}+{ca}=\frac{\mathrm{3}{abc}}{\mathrm{12}}=\frac{\mathrm{3}×\mathrm{1000}}{\mathrm{12}}=\mathrm{250} \\ $$$$\Rightarrow{ab}+{bc}+{ca}=\mathrm{250} \\ $$$$ \\ $$$${a},{b},{c}\:{are}\:{roots}\:{of}\:{x}^{\mathrm{3}} −\mathrm{30}{x}^{\mathrm{2}} +\mathrm{250}{x}−\mathrm{1000}=\mathrm{0} \\ $$$$\left({x}−\mathrm{20}\right)\left({x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{50}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{20},\:\mathrm{5}\pm\mathrm{5}{i} \\ $$$$\Rightarrow{a},{b},{c}=\left(\mathrm{20},\:\mathrm{5}+\mathrm{5}{i},\:\mathrm{5}−\mathrm{5}{i}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *