Menu Close

Find-the-polynomial-with-roots-that-exceed-the-roots-of-f-x-3x-3-14x-2-x-62-0-by-3-Hence-determine-the-value-of-1-a-3-1-b-3-1-c-3-where-a-b-and-c-are-roots-




Question Number 198968 by necx122 last updated on 26/Oct/23
Find the polynomial with roots that  exceed the roots of   f(x)=3x^3 −14x^2 +x+62=0 by 3. Hence  determine the value of (1/(a+3))+(1/(b+3))+(1/(c+3)),  where a,b and c are roots.
Findthepolynomialwithrootsthatexceedtherootsoff(x)=3x314x2+x+62=0by3.Hencedeterminethevalueof1a+3+1b+3+1c+3,wherea,bandcareroots.
Answered by Rasheed.Sindhi last updated on 26/Oct/23
Let a,b,c are roots of   3x^3 −14x^2 +x+62=0  a+b+c=((14)/3) , ab+bc+ca=(1/3) , abc=−((62)/3)  The required equation have roots a+3,  b+3, c+3  •(a+3)+(b+3)+(c+3)=a+b+c+9=((14)/3)+9=((41)/3)  •(a+3)(b+3)+(b+3)(c+3)+(c+3)(a+3)      =ab+3(a+b)+9+bc+3(b+c)+9+ca+3(c+a)+9     =ab+bc+ca+6(a+b+c)+27     =(1/3)+6(((14)/3))+27=((1+84+81)/3)=((166)/3)  •(a+3)(b+3)(c+3)        =abc+3(ab+bc+ca)+9(a+b+c)+27       =−((62)/3)+3((1/3))+9(((14)/3))=((−62+3+126)/3)=((67)/3)  Hence the required equation will be:  x^3 +((41)/3)x^2 +((166)/3)x+((67)/3)=0  ⇒3x^3 +41x^2 +166x+67=0    (1/(a+3))+(1/(b+3))+(1/(c+3))    =(((a+3)(b+3)+(b+3)(c+3)+(a+3)(c+3))/((a+3)(b+3)(c+3)))    =(( ((166)/3))/((67)/3))=((166)/(67))
Leta,b,carerootsof3x314x2+x+62=0a+b+c=143,ab+bc+ca=13,abc=623Therequiredequationhaverootsa+3,b+3,c+3(a+3)+(b+3)+(c+3)=a+b+c+9=143+9=413(a+3)(b+3)+(b+3)(c+3)+(c+3)(a+3)=ab+3(a+b)+9+bc+3(b+c)+9+ca+3(c+a)+9=ab+bc+ca+6(a+b+c)+27=13+6(143)+27=1+84+813=1663(a+3)(b+3)(c+3)=abc+3(ab+bc+ca)+9(a+b+c)+27=623+3(13)+9(143)=62+3+1263=673Hencetherequiredequationwillbe:x3+413x2+1663x+673=03x3+41x2+166x+67=01a+3+1b+3+1c+3=(a+3)(b+3)+(b+3)(c+3)+(a+3)(c+3)(a+3)(b+3)(c+3)=1663673=16667
Commented by necx122 last updated on 26/Oct/23
This is great and I'm grateful. well understood. Thank you sir.
Commented by mr W last updated on 26/Oct/23
i think the question suggests one to  shift the given polynomial f(x) to the  right direction by 3 to get the new  polynomial at first. this is the easiest  way to determine the new polynomial.    please recheck your calculation sir!  i think something is wrong in it,  see following diagram with  (1)=original polynomial f(x)  (2)=what you got  (3)=what i got (see below)
ithinkthequestionsuggestsonetoshiftthegivenpolynomialf(x)totherightdirectionby3togetthenewpolynomialatfirst.thisistheeasiestwaytodeterminethenewpolynomial.pleaserecheckyourcalculationsir!ithinksomethingiswronginit,seefollowingdiagramwith(1)=originalpolynomialf(x)(2)=whatyougot(3)=whatigot(seebelow)
Commented by mr W last updated on 26/Oct/23
Commented by AST last updated on 26/Oct/23
The correct equation should be:   3x^2 −41x^2 +166x−67=0
Thecorrectequationshouldbe:3x241x2+166x67=0
Commented by mr W last updated on 26/Oct/23
i think the correct equation is  k(3x^2 −41x^2 +166x−148)=0 with k∈R, k≠0
ithinkthecorrectequationisk(3x241x2+166x148)=0withkR,k0
Commented by mr W last updated on 26/Oct/23
Commented by AST last updated on 26/Oct/23
I′m referring to the solution above.  The solution would have been correct if a,b and  c were all real numbers.   (a+3)(b+3)(c+3)  =abc+3(ab+bc+ca)+9(a+b+c)+27 is only true  when a,b,c∈R  When two(in the case of a cubic equation) come  from C\R,then we are no longer dealing with  variables(a,b,c) but (a,b^− ,c^− ) where b^− =x+yi.  ⇒b^− +3=(x+3)+yi;so we are only increasing  the real part by 3
Imreferringtothesolutionabove.Thesolutionwouldhavebeencorrectifa,bandcwereallrealnumbers.(a+3)(b+3)(c+3)=abc+3(ab+bc+ca)+9(a+b+c)+27isonlytruewhena,b,cRWhentwo(inthecaseofacubicequation)comefromCR,thenwearenolongerdealingwithvariables(a,b,c)but(a,b,c)whereb=x+yi.b+3=(x+3)+yi;soweareonlyincreasingtherealpartby3
Commented by AST last updated on 27/Oct/23
Let a=a,b^− =x+yi,c^− =z−yi  a+b^− +c^− =((14)/3)⇒c^− =z−yi⇒a+b^− +c^− =a+x+z=((14)/3)  ab^− +b^− c^− +c^− a=(1/3)⇒a(x+yi)+(x+yi)(z−yi)  +a(z−yi)⇒ax+az+xz+y^2 +i(yz−xy)=(1/3)  ⇒yz−xy=0⇒z=x⇒2ax+x^2 +y^2 =(1/3)  ab^− c^− =((−62)/3)⇒a(x^2 +y^2 )=((−62)/3)  a+b^− +c^− =((14)/3)⇒a+2x=((14)/3)  ∗(a+3)+(b^− +3)+(c^− +3)=a+x+z+9=((41)/3)  ∗(a+3)(b^− +3)(c^− +3)=(a+3)(x+3+yi)(x+3−yi)  =(a+3)[(x+3)^2 −(yi)^2 ]=(a+3)[(x+3)^2 +y^2 ]  =(a+3)(x^2 +y^2 +6x+9]=a(x^2 +y^2 )+3(2ax+x^2 +y^2 )  +9(a+2x)+27=−((62)/3)+3((1/3))+9(((14)/3))+((81)/3)=((148)/3)    ∗(a+3)(b^− +3)+(b^− +3)(c^− +3)+(c^− +3)(a+3)  =(a+3)(x+yi+3)+(x+3+yi)(x+3−yi)  +(x−yi+3)(a+3)  =(a+3)(2x+6)+(x+3)^2 +y^2 =2ax+6a+12x+27  +x^2 +y^2 =(2ax+x^2 +y^2 )+6(a+2x)+27  =(1/3)+6(((14)/3))+((81)/3)=((166)/3)  x^3 −((41)/3)x^2 +((166)/3)x−((148)/3)=0  ⇒3x^3 −41x^2 +166x−148=0⇒(1/(a+3))+(1/(b^− +3))+(1/(c^− +3))  =((166)/(148))=((83)/(74))
Leta=a,b=x+yi,c=zyia+b+c=143c=zyia+b+c=a+x+z=143ab+bc+ca=13a(x+yi)+(x+yi)(zyi)+a(zyi)ax+az+xz+y2+i(yzxy)=13yzxy=0z=x2ax+x2+y2=13abc=623a(x2+y2)=623a+b+c=143a+2x=143(a+3)+(b+3)+(c+3)=a+x+z+9=413(a+3)(b+3)(c+3)=(a+3)(x+3+yi)(x+3yi)=(a+3)[(x+3)2(yi)2]=(a+3)[(x+3)2+y2]=(a+3)(x2+y2+6x+9]=a(x2+y2)+3(2ax+x2+y2)+9(a+2x)+27=623+3(13)+9(143)+813=1483(a+3)(b+3)+(b+3)(c+3)+(c+3)(a+3)=(a+3)(x+yi+3)+(x+3+yi)(x+3yi)+(xyi+3)(a+3)=(a+3)(2x+6)+(x+3)2+y2=2ax+6a+12x+27+x2+y2=(2ax+x2+y2)+6(a+2x)+27=13+6(143)+813=1663x3413x2+1663x1483=03x341x2+166x148=01a+3+1b+3+1c+3=166148=8374
Answered by mr W last updated on 26/Oct/23
say the new polynomial is p(x).  roots of p(x) exceed the roots of f(x)  by 3, that means p(x)=f(x−3).  p(x)=3(x−3)^3 −14(x−3)^2 +(x−3)+62  p(x)=3x^3 −41x^2 +166x−148  say roots of p(x)=0 are A,B,C,  then A=a+3, B=b+3, C=c+3  (1/(a+3))+(1/(b+3))+(1/(c+3))=(1/A)+(1/B)+(1/C)  =((AB+BC+CA)/(ABC))=(((166)/3)/((148)/3))=((166)/(148))=((83)/(74)) ✓  ■
saythenewpolynomialisp(x).rootsofp(x)exceedtherootsoff(x)by3,thatmeansp(x)=f(x3).p(x)=3(x3)314(x3)2+(x3)+62p(x)=3x341x2+166x148sayrootsofp(x)=0areA,B,C,thenA=a+3,B=b+3,C=c+31a+3+1b+3+1c+3=1A+1B+1C=AB+BC+CAABC=16631483=166148=8374◼
Commented by necx122 last updated on 26/Oct/23
Wow!! Having to exclaim is all i can do at this point. Funnily, both answers appear in the options.
Commented by Rasheed.Sindhi last updated on 27/Oct/23
Most efficient way!
Mostefficientway!

Leave a Reply

Your email address will not be published. Required fields are marked *