Menu Close

If-A-M-n-n-A-2-A-1-k-R-Find-I-kA-1-




Question Number 199001 by mnjuly1970 last updated on 26/Oct/23
   If ,A ∈ M_(n×n)    ,  A^( 2)  = A ,1≠ k ∈R.     Find    (   I − kA )^( −1)  = ?
$$ \\ $$$$\:\mathrm{I}{f}\:,\mathrm{A}\:\in\:\mathrm{M}_{{n}×{n}} \:\:\:,\:\:\mathrm{A}^{\:\mathrm{2}} \:=\:\mathrm{A}\:,\mathrm{1}\neq\:{k}\:\in\mathbb{R}. \\ $$$$\:\:\:\mathrm{F}{ind}\:\:\:\:\left(\:\:\:\mathrm{I}\:−\:{k}\mathrm{A}\:\right)^{\:−\mathrm{1}} \:=\:?\: \\ $$
Answered by MM42 last updated on 26/Oct/23
if  ∣A∣≠0  ⇒A^2 =A ⇒^(×A^(−1) )  A=I   ⇒(I−kA)^(−1) =(I−kI)^(−1) =(1/(1−k)) I ✓
$${if}\:\:\mid{A}\mid\neq\mathrm{0} \\ $$$$\Rightarrow{A}^{\mathrm{2}} ={A}\:\overset{×{A}^{−\mathrm{1}} } {\Rightarrow}\:{A}={I}\: \\ $$$$\Rightarrow\left({I}−{kA}\right)^{−\mathrm{1}} =\left({I}−{kI}\right)^{−\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}−{k}}\:{I}\:\checkmark\:\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *