Menu Close

Sum-of-two-irrational-numbers-is-1-less-than-their-product-and-8-less-than-their-sum-of-squares-Find-the-larger-of-the-two-numbers-




Question Number 199011 by necx122 last updated on 26/Oct/23
Sum of two irrational numbers is 1  less than their product, and 8 less than  their sum of squares. Find the larger  of the two numbers.
Sumoftwoirrationalnumbersis1lessthantheirproduct,and8lessthantheirsumofsquares.Findthelargerofthetwonumbers.
Commented by nikif99 last updated on 27/Oct/23
a+b=ab−1 ⇒b=((a+1)/(a−1)) (1)  ab−1=a^2 +b^2 −8 ⇒^((1)) a((a+1)/(a−1))=a^2 +(((a+1)/(a−1)))^2 −8 ⇒  ((a(a+1)(a−1))/((a−1)^2 ))−(((a−1)^2 )/((a−1)^2 ))=((a^2 (a−1)^2 )/((a−1)^2 ))+(((a+1)^2 )/((a−1)^2 ))−((8(a−1)^2 )/((a−1)^2 )) ⇒  a(a^2 −1)+(7−a^2 )(a−1)^2 −(a+1)^2 =0 ⇒  a^4 −3a^3 −5a^2 +17a−6=0 ⇒^(Peano)  a=2∨a=3, ∈N rejected  ((a^4 −3a^3 −5a^2 +17a−6)/((a−2)(a−3)))=a^2 +2a−1 ⇒a=−1+(√2)∨a=−1−(√2)  greatest a=−1+(√2)
a+b=ab1b=a+1a1(1)ab1=a2+b28(1)aa+1a1=a2+(a+1a1)28a(a+1)(a1)(a1)2(a1)2(a1)2=a2(a1)2(a1)2+(a+1)2(a1)28(a1)2(a1)2a(a21)+(7a2)(a1)2(a+1)2=0a43a35a2+17a6=0Peanoa=2a=3,Nrejecteda43a35a2+17a6(a2)(a3)=a2+2a1a=1+2a=12greatesta=1+2
Answered by Rasheed.Sindhi last updated on 27/Oct/23
a,b are two irrational numbers  a+b=ab−1  a+b=a^2 +b^2 −8  a+b=(a+b)^2 −2ab−8  (a+b)^2 −(a+b)−2ab−8=0  Let  a+b=t=ab−1⇒ab=t+1  t^2 −t−2(t+1)−8=0  t^2 −3t−10=0  (t−5)(t+2)=0  t=a+b=ab−1=5 , −2   { ((a+b=5⇒ab=6⇒(a,b)=(2,3) or (3,2)^★ )),((a+b=−2⇒ab=−1^(★★) )) :}  ^★ a+b=5 , ab=6 ,  specify   integer values for a,b   Hence rejected.     ^(★★)   a+b=−2,ab=−1:  b=−(1/a)  a−(1/a)=−2  a^2 +2a−1=0  a=((−2±(√(4+4)))/2)=−1±(√2)   b=−(1/a)=−(1/(−1±(√2)))×((−1∓(√2))/(−1∓(√2)))=−((−1∓(√2))/(1−2))=−1∓(√2)   (a,b)=(−1+(√(2 )) , −1−(√2) ),(−1−(√(2 )) , −1+(√2) )  Clearly,  Larger value=−1+(√2)
a,baretwoirrationalnumbersa+b=ab1a+b=a2+b28a+b=(a+b)22ab8(a+b)2(a+b)2ab8=0Leta+b=t=ab1ab=t+1t2t2(t+1)8=0t23t10=0(t5)(t+2)=0t=a+b=ab1=5,2{a+b=5ab=6(a,b)=(2,3)or(3,2)a+b=2ab=1a+b=5,ab=6,specifyintegervaluesfora,bHencerejected.a+b=2,ab=1:b=1aa1a=2a2+2a1=0a=2±4+42=1±2b=1a=11±2×1212=1212=12(a,b)=(1+2,12),(12,1+2)Clearly,Largervalue=1+2
Commented by Rasheed.Sindhi last updated on 27/Oct/23
necx sir please go through my  solution once more. I′ve corrected  it now!
necxsirpleasegothroughmysolutiononcemore.Ivecorrecteditnow!
Commented by necx122 last updated on 27/Oct/23
how is that possible sir? by merely  looking at both values it seems like  1+(√2) is greater
howisthatpossiblesir?bymerelylookingatbothvaluesitseemslike1+2isgreater
Commented by mr W last updated on 27/Oct/23
but the two numbers are −1±(√2). so  −1+(√2) is the larger one and  −1−(√2) is the smaller one.
butthetwonumbersare1±2.so1+2isthelargeroneand12isthesmallerone.
Commented by necx122 last updated on 27/Oct/23
Yes, it's clear now. I think the error was just an oversight. Thank you, sir.
Commented by Rasheed.Sindhi last updated on 27/Oct/23
You′re right mr W sir. I′ve found my   mistake and now corrected it!
Youreright\boldsymbolmr\boldsymbolW\boldsymbolsir.Ivefoundmymistakeandnowcorrectedit!

Leave a Reply

Your email address will not be published. Required fields are marked *