Question Number 199011 by necx122 last updated on 26/Oct/23
$${Sum}\:{of}\:{two}\:{irrational}\:{numbers}\:{is}\:\mathrm{1} \\ $$$${less}\:{than}\:{their}\:{product},\:{and}\:\mathrm{8}\:{less}\:{than} \\ $$$${their}\:{sum}\:{of}\:{squares}.\:{Find}\:{the}\:{larger} \\ $$$${of}\:{the}\:{two}\:{numbers}. \\ $$
Commented by nikif99 last updated on 27/Oct/23
$${a}+{b}={ab}−\mathrm{1}\:\Rightarrow{b}=\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}\:\left(\mathrm{1}\right) \\ $$$${ab}−\mathrm{1}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{8}\:\overset{\left(\mathrm{1}\right)} {\Rightarrow}{a}\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}={a}^{\mathrm{2}} +\left(\frac{{a}+\mathrm{1}}{{a}−\mathrm{1}}\right)^{\mathrm{2}} −\mathrm{8}\:\Rightarrow \\ $$$$\frac{{a}\left({a}+\mathrm{1}\right)\left({a}−\mathrm{1}\right)}{\left({a}−\mathrm{1}\right)^{\mathrm{2}} }−\frac{\left({a}−\mathrm{1}\right)^{\mathrm{2}} }{\left({a}−\mathrm{1}\right)^{\mathrm{2}} }=\frac{{a}^{\mathrm{2}} \left({a}−\mathrm{1}\right)^{\mathrm{2}} }{\left({a}−\mathrm{1}\right)^{\mathrm{2}} }+\frac{\left({a}+\mathrm{1}\right)^{\mathrm{2}} }{\left({a}−\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{8}\left({a}−\mathrm{1}\right)^{\mathrm{2}} }{\left({a}−\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${a}\left({a}^{\mathrm{2}} −\mathrm{1}\right)+\left(\mathrm{7}−{a}^{\mathrm{2}} \right)\left({a}−\mathrm{1}\right)^{\mathrm{2}} −\left({a}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0}\:\Rightarrow \\ $$$${a}^{\mathrm{4}} −\mathrm{3}{a}^{\mathrm{3}} −\mathrm{5}{a}^{\mathrm{2}} +\mathrm{17}{a}−\mathrm{6}=\mathrm{0}\:\overset{{Peano}} {\Rightarrow}\:{a}=\mathrm{2}\vee{a}=\mathrm{3},\:\in\mathbb{N}\:{rejected} \\ $$$$\frac{{a}^{\mathrm{4}} −\mathrm{3}{a}^{\mathrm{3}} −\mathrm{5}{a}^{\mathrm{2}} +\mathrm{17}{a}−\mathrm{6}}{\left({a}−\mathrm{2}\right)\left({a}−\mathrm{3}\right)}={a}^{\mathrm{2}} +\mathrm{2}{a}−\mathrm{1}\:\Rightarrow{a}=−\mathrm{1}+\sqrt{\mathrm{2}}\vee{a}=−\mathrm{1}−\sqrt{\mathrm{2}} \\ $$$${greatest}\:{a}=−\mathrm{1}+\sqrt{\mathrm{2}} \\ $$
Answered by Rasheed.Sindhi last updated on 27/Oct/23
$${a},{b}\:{are}\:{two}\:{irrational}\:{numbers} \\ $$$${a}+{b}={ab}−\mathrm{1} \\ $$$${a}+{b}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{8} \\ $$$${a}+{b}=\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{ab}−\mathrm{8} \\ $$$$\left({a}+{b}\right)^{\mathrm{2}} −\left({a}+{b}\right)−\mathrm{2}{ab}−\mathrm{8}=\mathrm{0} \\ $$$${Let} \\ $$$${a}+{b}={t}={ab}−\mathrm{1}\Rightarrow{ab}={t}+\mathrm{1} \\ $$$${t}^{\mathrm{2}} −{t}−\mathrm{2}\left({t}+\mathrm{1}\right)−\mathrm{8}=\mathrm{0} \\ $$$${t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{10}=\mathrm{0} \\ $$$$\left({t}−\mathrm{5}\right)\left({t}+\mathrm{2}\right)=\mathrm{0} \\ $$$${t}={a}+{b}={ab}−\mathrm{1}=\mathrm{5}\:,\:−\mathrm{2} \\ $$$$\begin{cases}{{a}+{b}=\mathrm{5}\Rightarrow{ab}=\mathrm{6}\Rightarrow\left({a},{b}\right)=\left(\mathrm{2},\mathrm{3}\right)\:\mathrm{or}\:\left(\mathrm{3},\mathrm{2}\right)^{\bigstar} }\\{{a}+{b}=−\mathrm{2}\Rightarrow{ab}=−\mathrm{1}^{\bigstar\bigstar} }\end{cases} \\ $$$$\:^{\bigstar} {a}+{b}=\mathrm{5}\:,\:{ab}=\mathrm{6}\:,\:\:{specify} \\ $$$$\:{integer}\:{values}\:{for}\:{a},{b} \\ $$$$\:{Hence}\:{rejected}. \\ $$$$\: \\ $$$$\:^{\bigstar\bigstar} \:\:{a}+{b}=−\mathrm{2},{ab}=−\mathrm{1}: \\ $$$${b}=−\frac{\mathrm{1}}{{a}} \\ $$$${a}−\frac{\mathrm{1}}{{a}}=−\mathrm{2} \\ $$$${a}^{\mathrm{2}} +\mathrm{2}{a}−\mathrm{1}=\mathrm{0} \\ $$$${a}=\frac{−\mathrm{2}\pm\sqrt{\mathrm{4}+\mathrm{4}}}{\mathrm{2}}=−\mathrm{1}\pm\sqrt{\mathrm{2}}\: \\ $$$${b}=−\frac{\mathrm{1}}{{a}}=−\frac{\mathrm{1}}{−\mathrm{1}\pm\sqrt{\mathrm{2}}}×\frac{−\mathrm{1}\mp\sqrt{\mathrm{2}}}{−\mathrm{1}\mp\sqrt{\mathrm{2}}}=−\frac{−\mathrm{1}\mp\sqrt{\mathrm{2}}}{\mathrm{1}−\mathrm{2}}=−\mathrm{1}\mp\sqrt{\mathrm{2}}\: \\ $$$$\left({a},{b}\right)=\left(−\mathrm{1}+\sqrt{\mathrm{2}\:}\:,\:−\mathrm{1}−\sqrt{\mathrm{2}}\:\right),\left(−\mathrm{1}−\sqrt{\mathrm{2}\:}\:,\:−\mathrm{1}+\sqrt{\mathrm{2}}\:\right) \\ $$$${Clearly}, \\ $$$${Larger}\:{value}=−\mathrm{1}+\sqrt{\mathrm{2}}\: \\ $$
Commented by Rasheed.Sindhi last updated on 27/Oct/23
$${necx}\:{sir}\:{please}\:{go}\:{through}\:{my} \\ $$$${solution}\:{once}\:{more}.\:{I}'{ve}\:{corrected} \\ $$$${it}\:{now}! \\ $$
Commented by necx122 last updated on 27/Oct/23
$${how}\:{is}\:{that}\:{possible}\:{sir}?\:{by}\:{merely} \\ $$$${looking}\:{at}\:{both}\:{values}\:{it}\:{seems}\:{like} \\ $$$$\mathrm{1}+\sqrt{\mathrm{2}}\:{is}\:{greater} \\ $$
Commented by mr W last updated on 27/Oct/23
$${but}\:{the}\:{two}\:{numbers}\:{are}\:−\mathrm{1}\pm\sqrt{\mathrm{2}}.\:{so} \\ $$$$−\mathrm{1}+\sqrt{\mathrm{2}}\:{is}\:{the}\:{larger}\:{one}\:{and} \\ $$$$−\mathrm{1}−\sqrt{\mathrm{2}}\:{is}\:{the}\:{smaller}\:{one}. \\ $$
Commented by necx122 last updated on 27/Oct/23
Yes, it's clear now. I think the error was just an oversight. Thank you, sir.
Commented by Rasheed.Sindhi last updated on 27/Oct/23
$${You}'{re}\:{right}\:\boldsymbol{{mr}}\:\boldsymbol{{W}}\:\boldsymbol{{sir}}.\:{I}'{ve}\:{found}\:{my}\: \\ $$$${mistake}\:{and}\:{now}\:{corrected}\:{it}! \\ $$