Menu Close

Question-199089




Question Number 199089 by mr W last updated on 28/Oct/23
Answered by ajfour last updated on 28/Oct/23
Commented by ajfour last updated on 28/Oct/23
OB^( 2) =(2(√(10))−2cos α)^2 +((√(10))−2sin α)^2     as  tan α=(1/3)    OB^( 2) =(((20)/( (√(10))))−(6/( (√(10)))))^2 +(((10)/( (√(10))))−(2/( (√(10)))))^2         =((196+64)/(10)) = 26    OB =(√(26))
$${OB}^{\:\mathrm{2}} =\left(\mathrm{2}\sqrt{\mathrm{10}}−\mathrm{2cos}\:\alpha\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{10}}−\mathrm{2sin}\:\alpha\right)^{\mathrm{2}} \\ $$$$\:\:{as}\:\:\mathrm{tan}\:\alpha=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:{OB}^{\:\mathrm{2}} =\left(\frac{\mathrm{20}}{\:\sqrt{\mathrm{10}}}−\frac{\mathrm{6}}{\:\sqrt{\mathrm{10}}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{10}}{\:\sqrt{\mathrm{10}}}−\frac{\mathrm{2}}{\:\sqrt{\mathrm{10}}}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{196}+\mathrm{64}}{\mathrm{10}}\:=\:\mathrm{26} \\ $$$$\:\:{OB}\:=\sqrt{\mathrm{26}}\: \\ $$
Commented by mr W last updated on 28/Oct/23
very nice approach!  thanks alot!
$${very}\:{nice}\:{approach}! \\ $$$${thanks}\:{alot}! \\ $$
Answered by mr W last updated on 28/Oct/23
AC=(√(6^2 +2^2 ))=2(√(10))  cos ∠OAC=((AC)/(2×OA))=((√(10))/( (√(50))))=(1/( (√5)))  cos ∠BAC=(6/(2(√(10))))=(3/( (√(10))))  cos ∠OAB=cos (∠OAC−∠BAC)  =(1/( (√5)))×(3/( (√(10))))+(2/( (√5)))×(1/( (√(10))))=(5/( (√(50))))=(1/( (√2)))  OB^2 =6^2 +((√(50)))^2 −2×6×(√(50))×(1/( (√2)))=26  ⇒OB=(√(26))
$${AC}=\sqrt{\mathrm{6}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{10}} \\ $$$$\mathrm{cos}\:\angle{OAC}=\frac{{AC}}{\mathrm{2}×{OA}}=\frac{\sqrt{\mathrm{10}}}{\:\sqrt{\mathrm{50}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$$\mathrm{cos}\:\angle{BAC}=\frac{\mathrm{6}}{\mathrm{2}\sqrt{\mathrm{10}}}=\frac{\mathrm{3}}{\:\sqrt{\mathrm{10}}} \\ $$$$\mathrm{cos}\:\angle{OAB}=\mathrm{cos}\:\left(\angle{OAC}−\angle{BAC}\right) \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}×\frac{\mathrm{3}}{\:\sqrt{\mathrm{10}}}+\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{10}}}=\frac{\mathrm{5}}{\:\sqrt{\mathrm{50}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$${OB}^{\mathrm{2}} =\mathrm{6}^{\mathrm{2}} +\left(\sqrt{\mathrm{50}}\right)^{\mathrm{2}} −\mathrm{2}×\mathrm{6}×\sqrt{\mathrm{50}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=\mathrm{26} \\ $$$$\Rightarrow{OB}=\sqrt{\mathrm{26}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *