Menu Close

a-1-a-3-find-a-5-1-a-5-




Question Number 199135 by hardmath last updated on 28/Oct/23
a + (1/a) = 3  find:   a^5  + (1/a^5 )  =  ?
a+1a=3find:a5+1a5=?
Answered by som(math1967) last updated on 28/Oct/23
123
123
Answered by a.lgnaoui last updated on 28/Oct/23
3^5 =a^5 +(1/a^5 )+5(a^3 +(1/a^3 ))+10(a+(1/a))     =a^5 +(1/a^5 )+5(a+(1/a))[a^2 +(1/a^2 )+1]=  =a^5 +(1/a^5 )+5(a+(1/a))[(a+(1/a))^2 −1]  ⇒a^5 +(1/a^5 )=3^5 −5×24=243−120                     a^5 +(1/a^5 )=123
35=a5+1a5+5(a3+1a3)+10(a+1a)=a5+1a5+5(a+1a)[a2+1a2+1]==a5+1a5+5(a+1a)[(a+1a)21]a5+1a5=355×24=243120a5+1a5=123
Commented by hardmath last updated on 28/Oct/23
thank you professor
thankyouprofessor
Answered by Rasheed.Sindhi last updated on 28/Oct/23
a + (1/a) = 3 ; a^5  + (1/a^5 )  =  ?  (a+(1/a))^2 =3^2   a^2 +(1/a^2 )=9−2=7  (a+(1/a))^3 =3^3   a^3 +(1/a^3 )=27−3(a+(1/a))=27−3(3)=18  (a^2 +(1/a^2 ))(a^3 +(1/a^3 ))=a^5 +(1/a^5 )+a+(1/a)  (7)(18)=a^5 +(1/a^5 )+3  a^5 +(1/a^5 )=7×18−3=123
a+1a=3;a5+1a5=?(a+1a)2=32a2+1a2=92=7(a+1a)3=33a3+1a3=273(a+1a)=273(3)=18(a2+1a2)(a3+1a3)=a5+1a5+a+1a(7)(18)=a5+1a5+3a5+1a5=7×183=123
Answered by Rasheed.Sindhi last updated on 28/Oct/23
a + (1/a) = 3 ; a^5  + (1/a^5 )  =  ?  •(a+(1/a))^2 =3^2 =9  a^2 +(1/a^2 )=9−2=7  •(a^2 +(1/a^2 ))^2 =7^2 =49  a^4 +(1/a^4 )=49−2=47  •(a^2 +(1/a^2 ))(a+(1/a))=(7)(3)=21    a^3 +(1/a^3 )+a+(1/a)=21    a^3 +(1/a^3 )=21−(a+(1/a))=21−3=18  (a^4 +(1/a^4 ))(a+(1/a))=(47)(3)  a^5 +(1/a^5 )+a^3 +(1/a^3 )=141  a^5 +(1/a^5 )+18=141  a^5 +(1/a^5 )=141−18=123
a+1a=3;a5+1a5=?(a+1a)2=32=9a2+1a2=92=7(a2+1a2)2=72=49a4+1a4=492=47(a2+1a2)(a+1a)=(7)(3)=21a3+1a3+a+1a=21a3+1a3=21(a+1a)=213=18(a4+1a4)(a+1a)=(47)(3)a5+1a5+a3+1a3=141a5+1a5+18=141a5+1a5=14118=123
Commented by hardmath last updated on 28/Oct/23
thank you professor
thankyouprofessor
Answered by ajfour last updated on 28/Oct/23
a^2 +(1/a^2 )=7  p^n +q^n =(p+q){p^(n−1) −qp^(n−2) +....                              ....+p(−q)^(n−2) +(−q)^(n−1) }  hence  a^5 +(1/a^5 )=(a+(1/a))(a^4 −a^2 +1−(1/a^2 )+(1/a^4 ))  ⇒  Q=3(a^4 +(1/a^4 )−a^2 −(1/a^2 )+1)    =3(47−7+1)    = 3×41=123
a2+1a2=7pn+qn=(p+q){pn1qpn2+..+p(q)n2+(q)n1}hencea5+1a5=(a+1a)(a4a2+11a2+1a4)Q=3(a4+1a4a21a2+1)=3(477+1)=3×41=123
Answered by Rasheed.Sindhi last updated on 28/Oct/23
  a + (1/a) = 3; a^5  + (1/a^5 )  =  ?  a + (1/a) = 3⇒ { (((1/a)=3−a^★ )),((a^2 =3a−1^(★★) )) :}  ^★  (1/a)=3−a  (1/a^2 )=(3−a)^2 =a^2 −6a+9       =(3a−1)−6a+9=−3a+8  (1/a^3 )=((−3a+8)/a)=−3+8((1/a))        =−3+8(3−a)=−8a+21  (1/a^4 )=−8+((21)/a)=−8+21(3−a)        =−21a+55  (1/a^5 )=−21+((55)/a)=−21+55(3−a)       =−21+165−55a=−55a+144     ^(★★) a^2 =3a−1  a^3 =3a^2 −a=3(3a−1)−a=8a−3  a^4 =8a^2 −3a=8(3a−1)−3a=21a−8  a^5 =21a^2 −8a=21(3a−1)−8a=55a−21    a^5  + (1/a^5 )  =(55a−21)+(−55a+144)                    =123
a+1a=3;a5+1a5=?a+1a=3{1a=3aa2=3a11a=3a1a2=(3a)2=a26a+9=(3a1)6a+9=3a+81a3=3a+8a=3+8(1a)=3+8(3a)=8a+211a4=8+21a=8+21(3a)=21a+551a5=21+55a=21+55(3a)=21+16555a=55a+144a2=3a1a3=3a2a=3(3a1)a=8a3a4=8a23a=8(3a1)3a=21a8a5=21a28a=21(3a1)8a=55a21a5+1a5=(55a21)+(55a+144)=123
Answered by Skabetix last updated on 28/Oct/23
a^2 −3a+1=0  △=b^2 −4ac=9−4=5>0  x_1  and x_2 =((3±(√)5)/2)  a^5 +(1/a^5 )=((3±(√5))/2)+(1/((3±(√5))/2))=123
a23a+1=0=b24ac=94=5>0x1andx2=3±52a5+1a5=3±52+13±52=123

Leave a Reply

Your email address will not be published. Required fields are marked *