Menu Close

n-4-2n-3-2n-2-n-7-a-2-a-N-n-n-N-




Question Number 199170 by tri26112004 last updated on 28/Oct/23
n^4 +2n^3 +2n^2 +n+7 = a^2  (a∈N)  →n=¿ (n∈N)
n4+2n3+2n2+n+7=a2(aN)n=¿(nN)
Commented by Rasheed.Sindhi last updated on 31/Oct/23
Great!   ThanX Sir
Great!ThanXSir
Commented by Rasheed.Sindhi last updated on 30/Oct/23
•a^2 ≥(1)^4 +2(1)^3 +2(1)^2 +(1)+7  a^2 >13⇒a≥4^★   •n^3 +2n^2 +2n+1=((a^2 −7)/n)∈N  •n^4 +2n^3 +2n^2 +n+7=a^2   ⇒2n^3 +2n^2 +n+7=a^2 −n^4               =(a−n^2 )(a+n^2 )∈N  ⇒n^2 <a⇒n<(√a)
a2(1)4+2(1)3+2(1)2+(1)+7a2>13a4n3+2n2+2n+1=a27nNn4+2n3+2n2+n+7=a22n3+2n2+n+7=a2n4=(an2)(a+n2)Nn2<an<a
Commented by Rasheed.Sindhi last updated on 30/Oct/23
^★ What′s a′s upper limit?
Whatsasupperlimit?
Commented by Frix last updated on 30/Oct/23
SOLUTION Part 1  We can factorize it.  n^4 +2n^3 +2n^3 +n−a^2 +7=0  n=t−(1/2)  t^4 +(t^2 /2)−a^2 +((109)/(16))=0  It′s easy to get  n=−(1/2)±((√(−1±2(√(4a^2 −27))))/2) [_(of the ± signs) ^(all 4 combinations) ]  n∈R^+  ⇒ n=−(1/2)+((√(−1+2(√(4a^2 −27))))/2)  ⇒ for a∈R  4a^2 −27≥0∧−1+2(√(4a^2 −27))≥0  ⇒ a≤−((√(109))/4)∨a≥((√(109))/4)  a∈N ⇒ a≥3  No upper limit.
SOLUTIONPart1Wecanfactorizeit.n4+2n3+2n3+na2+7=0n=t12t4+t22a2+10916=0Itseasytogetn=12±1±24a2272[ofthe±signsall4combinations]nR+n=12+1+24a2272foraR4a22701+24a2270a1094a1094aNa3Noupperlimit.
Commented by Rasheed.Sindhi last updated on 30/Oct/23
Thanks Frix sir!
ThanksFrixsir!
Commented by Frix last updated on 30/Oct/23
SOLUTION Part 2  4a^2 −27=b^2   4a^2 −b^2 =27  (2a−b)(2a+b)=27  2a−b=1∧2a+b=27 ⇒ a=7∧b=13 ⇒ n=2 ★  2a−b=3∧2a+b=9 ⇒ a=3∧b=3 ⇒ n∉N  No other possibilities.
SOLUTIONPart24a227=b24a2b2=27(2ab)(2a+b)=272ab=12a+b=27a=7b=13n=22ab=32a+b=9a=3b=3nNNootherpossibilities.
Commented by Frix last updated on 30/Oct/23
I was in a hurry before, didn′t see this but  it′s obvious...
Iwasinahurrybefore,didntseethisbutitsobvious
Commented by Frix last updated on 31/Oct/23
��
Commented by tri26112004 last updated on 01/Nov/23
a≥4 and n<(√a)  It′s not OK
a4andn<aItsnotOK
Answered by Frix last updated on 28/Oct/23
Just try a few values for n  ⇒  n=2∧a=7
Justtryafewvaluesfornn=2a=7
Commented by tri26112004 last updated on 29/Oct/23
Exactly, only n=2 satyfied
Exactly,onlyn=2satyfied
Answered by Rasheed.Sindhi last updated on 29/Oct/23
n^4 +2n^3 +2n^2 +n+7 = A^2  (A∈N)  →n=¿ (n∈N)  f(n)=n^4 +2n^3 +2n^2 +n+7 − A^2 =0    (A∈N)  Let a,b,c,d are roots, at least one  of which is natural number.say  a∈N  a+b+c+d=−2   ab+ac+ad+bc+bd+cd=2  abc+abd+acd+bcd=−1  abcd=7−A^2 ⇒a=((7−A^2 )/(bcd))  A=1,2,...  A=1⇒a=(6/(bcd))⇒bcd=1,2,3,6⇒a=6,3,2,1   f(n) isn′t satisfied  A=2⇒abcd=7−2^2 =3⇒a=(3/(bcd))⇒bcd=1,3⇒a=3,1  f(n) isn′t satisfied  ....  A=7⇒abcd=7−7^2 ⇒a=((−42)/(bcd))   ⇒bcd=−1,−2,−3,−6,−7,−14,−21,−42  ⇒a=42,21,14,7,6,3,2,1  (A,n)=(7,2) satisfy f(n)  n=2:  •2+b+c+d=−2   determinant (((b+c+d=−4)))  •ab+ac+ad+bc+bd+cd=2     2(b+c+d)+bc+bd+cd=2     2(−4)+bc+bd+cd=2   determinant (((bc+bd+cd=10)))  •abc+abd+acd+bcd=−1     2bc+2bd+2cd+bcd=−1     2(bc+bd+cd)+bcd=−1     2(10)+bcd=−1     determinant (((bcd=−21)))  f(n)=(n−2)(n^3 +4n^2 +10n+21)          =(n−2)(n+3)(n^2 +n+7)  n=2 is only natural root.  Not a good approach!
n4+2n3+2n2+n+7=A2(AN)n=¿(nN)f(n)=n4+2n3+2n2+n+7A2=0(AN)Leta,b,c,dareroots,atleastoneofwhichisnaturalnumber.sayaNa+b+c+d=2ab+ac+ad+bc+bd+cd=2abc+abd+acd+bcd=1abcd=7A2a=7A2bcdA=1,2,A=1a=6bcdbcd=1,2,3,6a=6,3,2,1f(n)isntsatisfiedA=2abcd=722=3a=3bcdbcd=1,3a=3,1f(n)isntsatisfied.A=7abcd=772a=42bcdbcd=1,2,3,6,7,14,21,42a=42,21,14,7,6,3,2,1(A,n)=(7,2)satisfyf(n)n=2:2+b+c+d=2b+c+d=4ab+ac+ad+bc+bd+cd=22(b+c+d)+bc+bd+cd=22(4)+bc+bd+cd=2bc+bd+cd=10abc+abd+acd+bcd=12bc+2bd+2cd+bcd=12(bc+bd+cd)+bcd=12(10)+bcd=1bcd=21f(n)=(n2)(n3+4n2+10n+21)=(n2)(n+3)(n2+n+7)n=2isonlynaturalroot.Notagoodapproach!
Commented by Rasheed.Sindhi last updated on 29/Oct/23
Once we found n=2 ∧ A=7  We′ve to prove that there′s no  other natural root of f(n).  For this put A=7 in f(n) and  then trying to solve f(n) whose  one factor is already known: n−2    n^4 +2n^3 +2n^2 +n+7 − A^2 =0    (A∈N)  n^4 +2n^3 +2n^2 +n+7 − 7^2 =0      n^4 +2n^3 +2n^2 +n−42=0      (n−2)(n+3)(n^2 +n+7)=0  ∴ n=2 is only natural root.
Oncewefoundn=2A=7Wevetoprovethattheresnoothernaturalrootoff(n).ForthisputA=7inf(n)andthentryingtosolvef(n)whoseonefactorisalreadyknown:n2n4+2n3+2n2+n+7A2=0(AN)n4+2n3+2n2+n+772=0n4+2n3+2n2+n42=0(n2)(n+3)(n2+n+7)=0n=2isonlynaturalroot.

Leave a Reply

Your email address will not be published. Required fields are marked *