Question Number 199170 by tri26112004 last updated on 28/Oct/23

Commented by Rasheed.Sindhi last updated on 31/Oct/23

Commented by Rasheed.Sindhi last updated on 30/Oct/23

Commented by Rasheed.Sindhi last updated on 30/Oct/23

Commented by Frix last updated on 30/Oct/23
![SOLUTION Part 1 We can factorize it. n^4 +2n^3 +2n^3 +n−a^2 +7=0 n=t−(1/2) t^4 +(t^2 /2)−a^2 +((109)/(16))=0 It′s easy to get n=−(1/2)±((√(−1±2(√(4a^2 −27))))/2) [_(of the ± signs) ^(all 4 combinations) ] n∈R^+ ⇒ n=−(1/2)+((√(−1+2(√(4a^2 −27))))/2) ⇒ for a∈R 4a^2 −27≥0∧−1+2(√(4a^2 −27))≥0 ⇒ a≤−((√(109))/4)∨a≥((√(109))/4) a∈N ⇒ a≥3 No upper limit.](https://www.tinkutara.com/question/Q199248.png)
Commented by Rasheed.Sindhi last updated on 30/Oct/23

Commented by Frix last updated on 30/Oct/23

Commented by Frix last updated on 30/Oct/23

Commented by Frix last updated on 31/Oct/23
��
Commented by tri26112004 last updated on 01/Nov/23

Answered by Frix last updated on 28/Oct/23

Commented by tri26112004 last updated on 29/Oct/23

Answered by Rasheed.Sindhi last updated on 29/Oct/23

Commented by Rasheed.Sindhi last updated on 29/Oct/23
