Menu Close

Question-199213




Question Number 199213 by emilagazade last updated on 29/Oct/23
Answered by witcher3 last updated on 29/Oct/23
∫_a ^b (x−[x]−(1/2))f′(x)=dx  =Σ_(k=a) ^(b−1) ∫_k ^(k+1) (x−[x]−(1/2))f′(x)dx  =Σ_(k=a) ^(b−1) ∫_k ^(k+1) (x−k−(1/2))f′(x)  =Σ_(k=a[) ^(b−1) [x−k−(1/2)]_k ^(k+1) f(x)−∫_k ^(k+1) f(x)dx  =Σ_(k=a) ^(b−1) ((f(k+1)+f(k))/2)−Σ_a ^(b−1) ∫_k ^(k+1) f(x)dx  ==Σ_(k=a) ^b f(k)−((f(a)+f(b))/2)−∫_a ^b f(x)dx⇔  Σf(k)=∫_a ^b f(x)dx+((f(a)+f(b))/2)+∫_a ^b (x−[x]−(1/2))f′(x)dx
$$\int_{\mathrm{a}} ^{\mathrm{b}} \left(\mathrm{x}−\left[\mathrm{x}\right]−\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{f}'\left(\mathrm{x}\right)=\mathrm{dx} \\ $$$$=\underset{\mathrm{k}=\mathrm{a}} {\overset{\mathrm{b}−\mathrm{1}} {\sum}}\int_{\mathrm{k}} ^{\mathrm{k}+\mathrm{1}} \left(\mathrm{x}−\left[\mathrm{x}\right]−\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{f}'\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$=\underset{\mathrm{k}=\mathrm{a}} {\overset{\mathrm{b}−\mathrm{1}} {\sum}}\int_{\mathrm{k}} ^{\mathrm{k}+\mathrm{1}} \left(\mathrm{x}−\mathrm{k}−\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{f}'\left(\mathrm{x}\right) \\ $$$$=\underset{\mathrm{k}=\mathrm{a}\left[\right.} {\overset{\mathrm{b}−\mathrm{1}} {\sum}}\left[\mathrm{x}−\mathrm{k}−\frac{\mathrm{1}}{\mathrm{2}}\right]_{\mathrm{k}} ^{\mathrm{k}+\mathrm{1}} \mathrm{f}\left(\mathrm{x}\right)−\int_{\mathrm{k}} ^{\mathrm{k}+\mathrm{1}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$=\underset{\mathrm{k}=\mathrm{a}} {\overset{\mathrm{b}−\mathrm{1}} {\sum}}\frac{\mathrm{f}\left(\mathrm{k}+\mathrm{1}\right)+\mathrm{f}\left(\mathrm{k}\right)}{\mathrm{2}}−\underset{\mathrm{a}} {\overset{\mathrm{b}−\mathrm{1}} {\sum}}\int_{\mathrm{k}} ^{\mathrm{k}+\mathrm{1}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$==\underset{\mathrm{k}=\mathrm{a}} {\overset{\mathrm{b}} {\sum}}\mathrm{f}\left(\mathrm{k}\right)−\frac{\mathrm{f}\left(\mathrm{a}\right)+\mathrm{f}\left(\mathrm{b}\right)}{\mathrm{2}}−\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\Leftrightarrow \\ $$$$\Sigma\mathrm{f}\left(\mathrm{k}\right)=\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}+\frac{\mathrm{f}\left(\mathrm{a}\right)+\mathrm{f}\left(\mathrm{b}\right)}{\mathrm{2}}+\int_{\mathrm{a}} ^{\mathrm{b}} \left(\mathrm{x}−\left[\mathrm{x}\right]−\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{f}'\left(\mathrm{x}\right)\mathrm{dx} \\ $$
Commented by emilagazade last updated on 29/Oct/23
nice thanks
$${nice}\:{thanks} \\ $$
Commented by witcher3 last updated on 30/Oct/23
y′re welcom
$$\mathrm{y}'\mathrm{re}\:\mathrm{welcom} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *