Menu Close

If-x-p-iq-h-ik-and-p-q-k-h-then-relate-p-q-h-k-R-such-that-x-R-




Question Number 199290 by ajfour last updated on 31/Oct/23
If x=(√(p+iq))+(√(h+ik))  and  (p/q)≠(k/h)  then relate p,q,h,k ∈R  such that x∈R.
Ifx=p+iq+h+ikandpqkhthenrelatep,q,h,kRsuchthatxR.
Commented by Frix last updated on 31/Oct/23
(√(x+yi))=re^(iθ)  with r>0∧−(π/2)<θ≤(π/2)  (√(x+yi))∉R ⇒ −(π/2)<θ<0∨0<θ<(π/2)  ⇒  (√(p+qi))=a+bi is in the 1^(st)  quadrant  (√(h+ki))=c+di is in the 4^(th)  quadrant  (or the other way round)  ⇒ for a, b, c, d >0 we get  (√(p+qi))=a+bi  (√(h+ki))=c−di  (√(p+qi))+(√(h+ki))=(a+c)+(b−d)i∈R ⇒ d=b  (√(p+qi))=a+bi  (√(h+ki))=c−bi  p+qi=(a^2 −b^2 )+2abi ⇒ q>0  h+ki=(c^2 −b^2 )−2bci ⇒ k<0  For given p∈R, q∈R^+   a=(√(((√(p^2 +q^2 ))+p)/2)); b=(√(((√(p^2 +q^2 ))−p)/2))  We can find h∈R, k∈R^−   1. For given h∈R  c=(√(b^2 +h)); k=−(√(4(h−p)b^2 +q^2 ))  2. For given k∈R^−   c=−((ak)/q); h=((a^2 k^2 )/q^2 )−b^2   3. For given r>b^2   c=(√(r−b^2 )); h=r−2b^2 ; k=−2b(√(r−b^2 ))  4. For given −π<θ<0  c=−bcot (θ/2) ; h=((2b^2 cos θ)/(1−cos θ)); k=2b^2 cot (θ/2)  I′m not sure what kind of function you  want...
x+yi=reiθwithr>0π2<θπ2x+yiRπ2<θ<00<θ<π2p+qi=a+biisinthe1stquadranth+ki=c+diisinthe4thquadrant(ortheotherwayround)fora,b,c,d>0wegetp+qi=a+bih+ki=cdip+qi+h+ki=(a+c)+(bd)iRd=bp+qi=a+bih+ki=cbip+qi=(a2b2)+2abiq>0h+ki=(c2b2)2bcik<0ForgivenpR,qR+a=p2+q2+p2;b=p2+q2p2WecanfindhR,kR1.ForgivenhRc=b2+h;k=4(hp)b2+q22.ForgivenkRc=akq;h=a2k2q2b23.Forgivenr>b2c=rb2;h=r2b2;k=2brb24.Forgivenπ<θ<0c=bcotθ2;h=2b2cosθ1cosθ;k=2b2cotθ2Imnotsurewhatkindoffunctionyouwant
Answered by AST last updated on 31/Oct/23
(√(p+iq))=a+ib  ⇒p+iq=a^2 −b^2 +2iab  (√(h+ik))=c+di⇒(√(p+iq))+(√(h+ik))=(a+c)+(b+d)i  ⇒b=−d  ⇒(√(h+ik))=c−ib⇒h+ik=c^2 −b^2 −2ibc  ⇒h=(c^2 −b^2 );k=−2bc;p=a^2 −b^2 ;q=2ab
p+iq=a+ibp+iq=a2b2+2iabh+ik=c+dip+iq+h+ik=(a+c)+(b+d)ib=dh+ik=cibh+ik=c2b22ibch=(c2b2);k=2bc;p=a2b2;q=2ab
Commented by ajfour last updated on 31/Oct/23
there exists a zuch relation  tough to arrive at. I want  f(p,q,h,k)=0. Thank you still.
thereexistsazuchrelationtoughtoarriveat.Iwantf(p,q,h,k)=0.Thankyoustill.
Answered by mr W last updated on 31/Oct/23
(√(p+qi))=[(√(p^2 +q^2 ))((p/( (√(p^2 +q^2 ))))+(q/( (√(p^2 +q^2 ))))i)]^(1/2)   =[(√(p^2 +q^2 )) e^((tan^(−1) (q/p))i) ]^(1/2)   =(p^2 +q^2 )^(1/4) e^((1/2)(tan^(−1) (q/p))i)   similarly  (√(h+ki))=(h^2 +k^2 )^(1/4) e^((1/2)(tan^(−1) (k/h))i)   x=(√(p+qi))+(√(h+ki))=(p^2 +q^2 )^(1/4) e^((1/2)(tan^(−1) (q/p))i) +(h^2 +k^2 )^(1/4) e^((1/2)(tan^(−1) (k/h))i)   such that x∈R,  ⇒(p^2 +q^2 )^(1/4)  sin ((tan^(−1) (q/p))/2)+(h^2 +k^2 )^(1/4) sin ((tan^(−1) (k/h))/2)=0
p+qi=[p2+q2(pp2+q2+qp2+q2i)]12=[p2+q2e(tan1qp)i]12=(p2+q2)14e12(tan1qp)isimilarlyh+ki=(h2+k2)14e12(tan1kh)ix=p+qi+h+ki=(p2+q2)14e12(tan1qp)i+(h2+k2)14e12(tan1kh)isuchthatxR,(p2+q2)14sintan1qp2+(h2+k2)14sintan1kh2=0
Commented by ajfour last updated on 31/Oct/23
great way, thanks immensely sir!
greatway,thanksimmenselysir!
Answered by MM42 last updated on 31/Oct/23
 p=rcosa & q=rsina  & r=(√(p^2 +q^2 ))   h=r′cosb  &  k=r′sinb   &   r′=(√(h^2 +k^2 ))  ⇒x=(√r)e^(i(a/2)) +(√(r′))e^(i(b/2))   ⇒x^2 =re^(ia) +r^′ e^(ib) +2(√(rr′))e^(i(((a+b)/2)))   =r(cosa+isina)+r′(cosb+isinb)+2(√(rr′))(cos(((a+b)/2))+isin(((a+b)/2)))  x∈R⇒x^2 ∈R ⇒rsina+r′sinb+2(√(rr′))sin(((a+b)/2))=0  ⇒rsina+r′sinb+2(√(rr′))×(√((1−cos(a+b))/2))=0  ⇒p+q+2(√((rr′−(rsina)(r′cosb)+(r′sinb)(rcosa))/2))=0  ⇒p+q+2(√((rr′−qh+pk)/2))=0  ⇒p+q+(√(2((√((p^2 +q^2 )(h^2 +k^2 )))+pk−qh)))=0
p=rcosa&q=rsina&r=p2+q2h=rcosb&k=rsinb&r=h2+k2x=reia2+reib2x2=reia+reib+2rrei(a+b2)=r(cosa+isina)+r(cosb+isinb)+2rr(cos(a+b2)+isin(a+b2))xRx2Rrsina+rsinb+2rrsin(a+b2)=0rsina+rsinb+2rr×1cos(a+b)2=0p+q+2rr(rsina)(rcosb)+(rsinb)(rcosa)2=0p+q+2rrqh+pk2=0p+q+2((p2+q2)(h2+k2)+pkqh)=0
Commented by mr W last updated on 31/Oct/23
can we say  x∈R ⇔ x^2 ∈R ?  i think no. example: x^2 =−2 ∈R, but  x=±(√2)i ∉R.
canwesayxRx2R?ithinkno.example:x2=2R,butx=±2iR.
Commented by MM42 last updated on 31/Oct/23
Sir W  if “ x∈R”⇒x^2 ∈R  but  “x^2 ∈R”⇏x∈R  i did not get such a result  “ x^2 ∈R⇒x∈R”
SirWifxRx2Rbutx2RxRididnotgetsucharesultx2RxR
Commented by MM42 last updated on 31/Oct/23
yes result of  the last line was incorrect.  the result is the same line before  the end.   but  “if   z^2 =0⇒z=0 ”
yesresultofthelastlinewasincorrect.theresultisthesamelinebeforetheend.butifz2=0z=0
Commented by mr W last updated on 31/Oct/23
with  (√(p+q+(√(2(√((p^2 +q^2 )(h^2 +k^2 )))+pk−qh))))=0 ✓  we ensure that x^2 ∈R. but are we also  sure that x∈R?
withp+q+2(p2+q2)(h2+k2)+pkqh=0weensurethatx2R.butarewealsosurethatxR?
Answered by Mathspace last updated on 31/Oct/23
p+iq=(√(p^2 +q^2 ))e^(iarctan((q/p)))   and (√(p+iq))=(p^2 +q^2 )^(1/4) e^((1/2)iarctan((q/p)))   also  (√(h+ik))=(h^2 +k^2 )^(1/4)  e^((1/2)iarctan((k/h)))   ⇒x=^4 (√(p^2 +q^2 )){cos((1/2)arctan((q/p))  +isin((1/2)arctan((q/p))}  +^4 (√(h^2 +k^2 )){cos((1/2)arctan((k/h)))  +isin((1/2)arctan((k/h))}  and x∈R ⇒Im(....)=0 ⇔  (^4 (√(p^2 +q^2 )))sin((1/2)arctan((q/p)))  +^4 (√(h^2 +k^2 ))sin((1/2)arctan((k/h)))=0⇒  ((sin((1/2)arctan((q/p)))/(sin((1/2)arctan((k/h))))=−^4 (√((h^2 +k^2 )/(p^2 +q^2 )))
p+iq=p2+q2eiarctan(qp)andp+iq=(p2+q2)14e12iarctan(qp)alsoh+ik=(h2+k2)14e12iarctan(kh)x=4p2+q2{cos(12arctan(qp)+isin(12arctan(qp)}+4h2+k2{cos(12arctan(kh))+isin(12arctan(kh)}andxRIm(.)=0(4p2+q2)sin(12arctan(qp))+4h2+k2sin(12arctan(kh))=0sin(12arctan(qp)sin(12arctan(kh)=4h2+k2p2+q2
Answered by ajfour last updated on 01/Nov/23
x^2 =p+h+i(q+k)+2(√w)  (√w)=(√((p+iq)(h+ik)))=s−i(q+k)  ⇒ ph−qk+i(pk+hq)            = s^2 −(q+k)^2 −2is(q+k)  ph−qk=s^2 −(q+k)^2   2s= ((pk+hq)/(k+q))  4(ph−qk)+4(q+k)^2 =(((pk+hq)/(k+q)))^2
x2=p+h+i(q+k)+2ww=(p+iq)(h+ik)=si(q+k)phqk+i(pk+hq)=s2(q+k)22is(q+k)phqk=s2(q+k)22s=pk+hqk+q4(phqk)+4(q+k)2=(pk+hqk+q)2

Leave a Reply

Your email address will not be published. Required fields are marked *