Menu Close

Find-the-number-of-integers-greater-than-6200-that-can-be-formed-from-the-digits-1-3-6-8-and-9-where-each-digit-is-used-at-most-once-




Question Number 199333 by necx122 last updated on 01/Nov/23
Find the number of integers greater  than 6200 that can be formed from  the digits 1,3,6,8 and 9, where each  digit is used at most once.
Findthenumberofintegersgreaterthan6200thatcanbeformedfromthedigits1,3,6,8and9,whereeachdigitisusedatmostonce.
Answered by aleks041103 last updated on 01/Nov/23
Case 1: 4−digit nums  The first digit can be only 6,8 or 9.  Case 1.1: 8 or 9  we have 4 digits left for 3 positions.  ⇒in total=2×(4×3×2)=48  Case 1.2: 6  the number can be of types:  63∗∗, 68∗∗,69∗∗  for each of which we have 6 options  ⇒in total=3×6=18    Case2: 5−digit nums  All 5−digit are greater thn 6200.  ⇒in total=5×4×3×2×1=120    Answer=48+18+120    ⇒Ans.=186
Case1:4digitnumsThefirstdigitcanbeonly6,8or9.Case1.1:8or9wehave4digitsleftfor3positions.intotal=2×(4×3×2)=48Case1.2:6thenumbercanbeoftypes:63,68,69foreachofwhichwehave6optionsintotal=3×6=18Case2:5digitnumsAll5digitaregreaterthn6200.intotal=5×4×3×2×1=120Answer=48+18+120Ans.=186
Commented by necx122 last updated on 01/Nov/23
Thank you. This reminds me of how I learnt this those days with Mr. W's method. Thank you so much our old friend, Aleks.
Answered by mr W last updated on 01/Nov/23
1) 5−digit numbers:  5!=120    2) valid 4−digit numbers:  63xy, 68xy, 69xy,  81xy, 83xy, 86xy, 89xy,  91xy, 93xy, 96xy, 98xy  xy=2 from 3=P_2 ^3   ⇒11×P_2 ^3 =66    totally: 120+66=186 ✓
1)5digitnumbers:5!=1202)valid4digitnumbers:63xy,68xy,69xy,81xy,83xy,86xy,89xy,91xy,93xy,96xy,98xyxy=2from3=P2311×P23=66totally:120+66=186
Commented by necx122 last updated on 01/Nov/23
always on it sir. Thank you. This is clear and well understood.

Leave a Reply

Your email address will not be published. Required fields are marked *