Question Number 199385 by hardmath last updated on 02/Nov/23
$$\mathrm{Find}: \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{x}^{\mathrm{15}} \:\sqrt{\mathrm{1}\:+\:\mathrm{3x}^{\mathrm{8}} }\:\mathrm{dx}\:=\:? \\ $$
Answered by witcher3 last updated on 02/Nov/23
$$\mathrm{x}^{\mathrm{15}} =\mathrm{x}^{\mathrm{7}.} \mathrm{x}^{\mathrm{8}} =\frac{\mathrm{1}}{\mathrm{8}}\mathrm{x}^{\mathrm{8}} \mathrm{d}\left(\mathrm{x}^{\mathrm{8}} \right) \\ $$$$\int\mathrm{u}\sqrt{\mathrm{1}+\mathrm{u}}=\int\left(\mathrm{1}+\mathrm{u}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\left(\mathrm{1}+\mathrm{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{du}…. \\ $$
Commented by hardmath last updated on 02/Nov/23
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{ser},\:\mathrm{but}\:\mathrm{how} \\ $$
Commented by witcher3 last updated on 02/Nov/23
$$\mathrm{u}=\mathrm{x}^{\mathrm{8}} \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{u}\sqrt{\mathrm{1}+\mathrm{3u}}.\mathrm{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{24}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{3u}+\mathrm{1}−\mathrm{1}\right)\left(\mathrm{1}+\mathrm{3u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{24}}\left\{\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{3u}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \mathrm{du}−\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\mathrm{3u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{du}\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{24}}\left[\frac{\mathrm{1}}{\mathrm{3}\left(\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{1}\right)}\left(\mathrm{3u}+\mathrm{1}\right)^{\frac{\mathrm{5}}{\mathrm{2}}} −\frac{\mathrm{1}}{\mathrm{3}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}\left(\mathrm{1}+\mathrm{3u}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{24}}\left[\frac{\mathrm{2}}{\mathrm{15}}\left(\mathrm{2}\right)^{\mathrm{5}} −\frac{\mathrm{2}}{\mathrm{15}}−\frac{\mathrm{2}}{\mathrm{9}}\mathrm{2}^{\mathrm{3}} +\frac{\mathrm{2}}{\mathrm{9}}\right] \\ $$
Commented by York12 last updated on 03/Nov/23
$$\mathrm{Where}\:\mathrm{are}\:\mathrm{you}\:\mathrm{from}\: \\ $$
Commented by witcher3 last updated on 03/Nov/23
$$\mathrm{i}\:\mathrm{m}\:\mathrm{from}\:\mathrm{france} \\ $$
Commented by York12 last updated on 03/Nov/23
$$\mathrm{ur}\:\mathrm{speaking}\:\mathrm{arabic}\:\mathrm{lol} \\ $$
Commented by witcher3 last updated on 03/Nov/23
$$\mathrm{yes}\:\mathrm{i}\:\mathrm{speak}\:\mathrm{arabic}\:\mathrm{im}\:\mathrm{algerian}\:\mathrm{livin}\:\mathrm{in}\:\mathrm{France} \\ $$
Commented by York12 last updated on 03/Nov/23
$$\left.\mathrm{hmmmm}\:\mathrm{okay}\:\mathrm{nice}\:\mathrm{to}\:\mathrm{meet}\:\mathrm{you}\::\right)\:,\:\mathrm{I}\:\mathrm{am}\:\mathrm{muslim} \\ $$$$\mathrm{too}. \\ $$
Commented by York12 last updated on 03/Nov/23
$$\mathrm{wow}\:\mathrm{ur}\:\mathrm{algerian}\:,\:\mathrm{nice}\:\mathrm{to}\:\mathrm{hear}\:\mathrm{that}\:,\:\mathrm{I}\:\mathrm{am}\:\mathrm{saudi} \\ $$
Commented by Frix last updated on 03/Nov/23
$$\mathrm{I}\:\mathrm{once}\:\mathrm{had}\:\mathrm{a}\:\mathrm{student}\:\mathrm{who}\:\mathrm{stated}\:“\mathrm{I}\:\mathrm{learn} \\ $$$$\mathrm{Pythagoras}\:\mathrm{just}\:\mathrm{for}\:\mathrm{school}\:\mathrm{because}\:\mathrm{I}\:\mathrm{have} \\ $$$$\mathrm{to}.\:\mathrm{All}\:\mathrm{pagans}\:\mathrm{and}\:\mathrm{all}\:\mathrm{their}\:\mathrm{friends}\:\mathrm{go}\:\mathrm{to} \\ $$$$\mathrm{hell}.'' \\ $$
Commented by York12 last updated on 03/Nov/23
$$\mathrm{LMAO} \\ $$
Commented by witcher3 last updated on 04/Nov/23
$$\mathrm{nice}\:\mathrm{To}\:\mathrm{meet}\:\mathrm{You}\:\mathrm{yorke} \\ $$$$\mathrm{selam}\:\mathrm{alaykoum} \\ $$
Commented by witcher3 last updated on 04/Nov/23
$$\mathrm{lol}\:\mathrm{frix} \\ $$
Commented by York12 last updated on 04/Nov/23
$$\mathrm{alaykom}\:\mathrm{alsalam}\:\mathrm{nice}\:\mathrm{to}\:\mathrm{meet}\:\mathrm{you}\:\mathrm{too} \\ $$$$\mathrm{my}\:\mathrm{name}\:\mathrm{is}\:\mathrm{YUSUF}\:\mathrm{btw} \\ $$
Answered by Frix last updated on 03/Nov/23
$$\int{x}^{\mathrm{15}} \sqrt{\mathrm{3}{x}^{\mathrm{8}} +\mathrm{1}}{dx}\:\overset{{t}=\mathrm{3}{x}^{\mathrm{8}} +\mathrm{1}} {=} \\ $$$$=\frac{\mathrm{1}}{\mathrm{72}}\int\left({t}^{\frac{\mathrm{3}}{\mathrm{2}}} −{t}^{\frac{\mathrm{1}}{\mathrm{2}}} \right){dt}= \\ $$$$=\frac{{t}^{\frac{\mathrm{5}}{\mathrm{2}}} }{\mathrm{180}}−\frac{{t}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{108}}=\frac{{t}^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\mathrm{3}{t}−\mathrm{5}\right)}{\mathrm{540}}= \\ $$$$=\frac{\left(\mathrm{3}{x}^{\mathrm{8}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \left(\mathrm{9}{x}^{\mathrm{8}} −\mathrm{2}\right)}{\mathrm{540}} \\ $$$$\Omega=\frac{\mathrm{29}}{\mathrm{270}} \\ $$