Menu Close

calculate-Q-If-f-x-2-e-x-1-e-x-3-2-e-x-f-1-pi-4-




Question Number 199405 by mnjuly1970 last updated on 03/Nov/23
            calculate ...    Q:      If  ,   f(x) =2 e^x  −1 + ⌊e^x + (3/2) +⌊e^x ⌋ ⌋           ⇒    f^(−1)  ( (π/4) ) =?
calculateQ:If,f(x)=2ex1+ex+32+exf1(π4)=?
Answered by Frix last updated on 03/Nov/23
e^x =i+f; i∈Z∧0≤f<1  e^π =23+ζ  2(i+f)−1+⌊i+f+1+(1/2)+⌊i+f⌋⌋=23+ζ  2i−1+2f+⌊2i+1+f+(1/2)⌋=23+ζ  4i+2f+⌊f+(1/2)⌋=23+ζ  0≤f<(1/2)  4i+2f=23+ζ ⇒ i=((23)/4)∉Z  (1/2)≤f<1 ⇒ 0≤2f−1<1  4i+2+(2f−1)=23+ζ ⇒ i=((21)/4)∉Z  ⇒ f(x)≠e^π   ⇒ f^(−1) (e^π ) does not exist
ex=i+f;iZ0f<1eπ=23+ζ2(i+f)1+i+f+1+12+i+f=23+ζ2i1+2f+2i+1+f+12=23+ζ4i+2f+f+12=23+ζ0f<124i+2f=23+ζi=234Z12f<102f1<14i+2+(2f1)=23+ζi=214Zf(x)eπf1(eπ)doesnotexist
Commented by Frix last updated on 03/Nov/23
Please correct me if I′m wrong.
PleasecorrectmeifImwrong.
Commented by mnjuly1970 last updated on 03/Nov/23
  thank you so much sir  for your  effort .
thankyousomuchsirforyoureffort.
Answered by mnjuly1970 last updated on 03/Nov/23
   my solution       f(x)=2e^x −1 + ⌊e^x ⌋ + ⌊ e^x  +(1/2)⌋+1              = 2e^x + ⌊2e^x ⌋  −−−−−       y= 2e^x + ⌊ 2e^x ⌋ ⇒ x= 2e^y  + ⌊2e^y ⌋        ⌊x ⌋=2 ⌊2e^y ⌋⇒ ⌊2e^y ⌋=((⌊x⌋)/2)     −−−−      x = 2e^y  +((⌊x⌋)/2)  ⇒  y = ln((x/2)−((⌊x⌋)/4))         f^( −1) (x) = ln((x/2)−((⌊x⌋)/4))        f^(−1) ((π/4) )= ln((π/8) ) ⇔ f(ln((π/8)))=(π/4)
mysolutionf(x)=2ex1+ex+ex+12+1=2ex+2exy=2ex+2exx=2ey+2eyx=22ey2ey=x2x=2ey+x2y=ln(x2x4)f1(x)=ln(x2x4)f1(π4)=ln(π8)f(ln(π8))=π4
Commented by Frix last updated on 03/Nov/23
f(x)=2e^x +⌊2e^x ⌋  lim_(x→(ln 6)^− )  f(x) =23  lim_(x→(ln 6)^+ )  f(x) =24  e^π ≈23.1407  ⇒ ∀x∈R: f(x)≠e^π   ======================  f(x)=2e^x +⌊2e^x ⌋  f^(−1) (x)=ln ((2x−⌊x⌋)/4)  f^(−1) (f(x))=x but f(f^(−1) (x))≠x  This is strange...   f^(−1) (e^π )=ln ((2e^π −23)/4)  But  f(ln ((2e^π −23)/4))=e^π −(1/2)  So there′s something wrong.
f(x)=2ex+2exlimx(ln6)f(x)=23limx(ln6)+f(x)=24eπ23.1407xR:f(x)eπ======================f(x)=2ex+2exf1(x)=ln2xx4f1(f(x))=xbutf(f1(x))xThisisstrangef1(eπ)=ln2eπ234Butf(ln2eπ234)=eπ12Sotheressomethingwrong.
Commented by Frix last updated on 03/Nov/23
v=u+⌊u⌋  The range of this function is  R\{v∈R∧n∈Z∣2n−1≤v<2n}  ⇒ v^(−1)  is not defined in these intervals  ⇒  f^(−1) (x)= { ((ln ((2x−⌊x⌋)/4), 2n≤x<2n+1)),((undefined, 2n−1≤x<2n)) :} ∀n∈Z  23<e^π <24  2×12−1<e^π <2×12  ⇒  f^(−1) (e^π ) doesn′t exist
v=u+uTherangeofthisfunctionisR{vRnZ2n1v<2n}v1isnotdefinedintheseintervalsf1(x)={ln2xx4,2nx<2n+1undefined,2n1x<2nnZ23<eπ<242×121<eπ<2×12f1(eπ)doesntexist
Commented by mnjuly1970 last updated on 03/Nov/23
thanks alot sir.you are right ⋛
thanksalotsir.youareright
Commented by Frix last updated on 03/Nov/23
You′re welcome, working on these things  keeps my brain young.
Yourewelcome,workingonthesethingskeepsmybrainyoung.

Leave a Reply

Your email address will not be published. Required fields are marked *