Menu Close

Find-1-lim-n-5n-25-3n-15-1-5n-2-lim-x-x-3-3x-2-1-1-3-x-3-3x-2-1-1-3-3-lim-x-0-cos-4x-3-1-sin-6-2x-




Question Number 199451 by hardmath last updated on 03/Nov/23
Find:  1. lim_(n→∞)  (((5n − 25)/(3n + 15)))^(1/(5n))   2. lim_(x→∞)  (((x^3  + 3x^2  + 1))^(1/3)  − ((x^3  − 3x^2  + 1))^(1/3)  )  3. lim_(x→0)  ((cos 4x^3  − 1)/(sin^6  2x))
$$\mathrm{Find}: \\ $$$$\mathrm{1}.\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{5}\boldsymbol{\mathrm{n}}}]{\frac{\mathrm{5n}\:−\:\mathrm{25}}{\mathrm{3n}\:+\:\mathrm{15}}} \\ $$$$\mathrm{2}.\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{1}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} \:−\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{1}}\:\right) \\ $$$$\mathrm{3}.\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{4x}^{\mathrm{3}} \:−\:\mathrm{1}}{\mathrm{sin}^{\mathrm{6}} \:\mathrm{2x}} \\ $$
Answered by cortano12 last updated on 04/Nov/23
(2) lim_(x→∞)  ((6x^2 )/( (((x^3 +3x^2 +1)^2 ))^(1/3) +(((x^3 +3x^2 +1)(x^3 −3x^2 +1)))^(1/3) +(((x^3 −3x^2 +1)^2 ))^(1/3) ))    = lim_(x→∞)  ((6x^2 )/(x^2  [ (((1+(3/x)+(1/x^3 ))^2 ))^(1/3) +(((1−(3/x)+(1/x^3 ))(1+(3/x)+(1/x^3 ))))^(1/3) +(((1−(3/x)+(1/x^3 ))^2  ))^(1/3) ]))   = (6/3)=2
$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{6x}^{\mathrm{2}} }{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{3x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }+\sqrt[{\mathrm{3}}]{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{3x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{3}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{1}\right)}+\sqrt[{\mathrm{3}}]{\left(\mathrm{x}^{\mathrm{3}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$$\:\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{6x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} \:\left[\:\sqrt[{\mathrm{3}}]{\left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\right)^{\mathrm{2}} }+\sqrt[{\mathrm{3}}]{\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\right)\left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\right)}+\sqrt[{\mathrm{3}}]{\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\right)^{\mathrm{2}} \:}\right]} \\ $$$$\:=\:\frac{\mathrm{6}}{\mathrm{3}}=\mathrm{2} \\ $$$$ \\ $$
Commented by hardmath last updated on 04/Nov/23
thank you ser
$${thank}\:{you}\:{ser} \\ $$
Answered by cortano12 last updated on 04/Nov/23
(3) lim_(x→0)  ((cos 4x^3 −1)/(sin^6 2x))    = lim_(x→0)  ((−sin^2 (4x^3 ))/((cos 4x^3 +1)sin^6 (2x)))   = −(1/2) lim_(x→0)  (((4x^3 )^2 )/((2x)^6 )) = −(1/2).((16)/(64))    = −(1/8)
$$\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{4x}^{\mathrm{3}} −\mathrm{1}}{\mathrm{sin}\:^{\mathrm{6}} \mathrm{2x}} \\ $$$$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{4x}^{\mathrm{3}} \right)}{\left(\mathrm{cos}\:\mathrm{4x}^{\mathrm{3}} +\mathrm{1}\right)\mathrm{sin}\:^{\mathrm{6}} \left(\mathrm{2x}\right)} \\ $$$$\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{4x}^{\mathrm{3}} \right)^{\mathrm{2}} }{\left(\mathrm{2x}\right)^{\mathrm{6}} }\:=\:−\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{16}}{\mathrm{64}} \\ $$$$\:\:=\:−\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$ \\ $$
Commented by hardmath last updated on 04/Nov/23
thank you ser
$${thank}\:{you}\:{ser} \\ $$
Answered by cortano12 last updated on 04/Nov/23
(1) lim_(n→∞) (((5n−25)/(3n+15)))^(1/(5n))     = e^(lim_(n→∞) (((5n−25)/(3n+15))−1).(1/(5n)))     = e^(lim_(n→∞) (((2n−40)/(15n(n+5))))) = e^0 =1
$$\left(\mathrm{1}\right)\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{5n}−\mathrm{25}}{\mathrm{3n}+\mathrm{15}}\right)^{\frac{\mathrm{1}}{\mathrm{5n}}} \\ $$$$\:\:=\:\mathrm{e}\:^{\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{5n}−\mathrm{25}}{\mathrm{3n}+\mathrm{15}}−\mathrm{1}\right).\frac{\mathrm{1}}{\mathrm{5n}}} \\ $$$$\:\:=\:\mathrm{e}\:^{\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2n}−\mathrm{40}}{\mathrm{15n}\left(\mathrm{n}+\mathrm{5}\right)}\right)} =\:\mathrm{e}^{\mathrm{0}} =\mathrm{1} \\ $$
Commented by hardmath last updated on 04/Nov/23
thank you ser
$${thank}\:{you}\:{ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *