Question Number 199451 by hardmath last updated on 03/Nov/23
$$\mathrm{Find}: \\ $$$$\mathrm{1}.\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{5}\boldsymbol{\mathrm{n}}}]{\frac{\mathrm{5n}\:−\:\mathrm{25}}{\mathrm{3n}\:+\:\mathrm{15}}} \\ $$$$\mathrm{2}.\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{1}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} \:−\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{1}}\:\right) \\ $$$$\mathrm{3}.\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{4x}^{\mathrm{3}} \:−\:\mathrm{1}}{\mathrm{sin}^{\mathrm{6}} \:\mathrm{2x}} \\ $$
Answered by cortano12 last updated on 04/Nov/23
$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{6x}^{\mathrm{2}} }{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{3x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }+\sqrt[{\mathrm{3}}]{\left(\mathrm{x}^{\mathrm{3}} +\mathrm{3x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{3}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{1}\right)}+\sqrt[{\mathrm{3}}]{\left(\mathrm{x}^{\mathrm{3}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$$\:\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{6x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} \:\left[\:\sqrt[{\mathrm{3}}]{\left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\right)^{\mathrm{2}} }+\sqrt[{\mathrm{3}}]{\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\right)\left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\right)}+\sqrt[{\mathrm{3}}]{\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\right)^{\mathrm{2}} \:}\right]} \\ $$$$\:=\:\frac{\mathrm{6}}{\mathrm{3}}=\mathrm{2} \\ $$$$ \\ $$
Commented by hardmath last updated on 04/Nov/23
$${thank}\:{you}\:{ser} \\ $$
Answered by cortano12 last updated on 04/Nov/23
$$\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{4x}^{\mathrm{3}} −\mathrm{1}}{\mathrm{sin}\:^{\mathrm{6}} \mathrm{2x}} \\ $$$$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{4x}^{\mathrm{3}} \right)}{\left(\mathrm{cos}\:\mathrm{4x}^{\mathrm{3}} +\mathrm{1}\right)\mathrm{sin}\:^{\mathrm{6}} \left(\mathrm{2x}\right)} \\ $$$$\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{4x}^{\mathrm{3}} \right)^{\mathrm{2}} }{\left(\mathrm{2x}\right)^{\mathrm{6}} }\:=\:−\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{16}}{\mathrm{64}} \\ $$$$\:\:=\:−\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$ \\ $$
Commented by hardmath last updated on 04/Nov/23
$${thank}\:{you}\:{ser} \\ $$
Answered by cortano12 last updated on 04/Nov/23
$$\left(\mathrm{1}\right)\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{5n}−\mathrm{25}}{\mathrm{3n}+\mathrm{15}}\right)^{\frac{\mathrm{1}}{\mathrm{5n}}} \\ $$$$\:\:=\:\mathrm{e}\:^{\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{5n}−\mathrm{25}}{\mathrm{3n}+\mathrm{15}}−\mathrm{1}\right).\frac{\mathrm{1}}{\mathrm{5n}}} \\ $$$$\:\:=\:\mathrm{e}\:^{\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2n}−\mathrm{40}}{\mathrm{15n}\left(\mathrm{n}+\mathrm{5}\right)}\right)} =\:\mathrm{e}^{\mathrm{0}} =\mathrm{1} \\ $$
Commented by hardmath last updated on 04/Nov/23
$${thank}\:{you}\:{ser} \\ $$