Menu Close

What-minimum-value-f-x-y-x-2-y-2-z-2-when-x-2y-4z-21-




Question Number 199459 by cortano12 last updated on 04/Nov/23
  What minimum value     f(x,y)=x^2 +y^2 −z^2  when     x+2y+4z=21
$$\:\:\mathrm{What}\:\mathrm{minimum}\:\mathrm{value}\: \\ $$$$\:\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{z}^{\mathrm{2}} \:\mathrm{when}\: \\ $$$$\:\:\mathrm{x}+\mathrm{2y}+\mathrm{4z}=\mathrm{21} \\ $$
Answered by Frix last updated on 04/Nov/23
x=a  y=2a  z=−4a  ⇒  x=−((21)/(11))  y=−((42)/(11))  z=((84)/(11))  x^2 +y^2 −z^2 =−((441)/(11))
$${x}={a} \\ $$$${y}=\mathrm{2}{a} \\ $$$${z}=−\mathrm{4}{a} \\ $$$$\Rightarrow \\ $$$${x}=−\frac{\mathrm{21}}{\mathrm{11}} \\ $$$${y}=−\frac{\mathrm{42}}{\mathrm{11}} \\ $$$${z}=\frac{\mathrm{84}}{\mathrm{11}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{z}^{\mathrm{2}} =−\frac{\mathrm{441}}{\mathrm{11}} \\ $$
Answered by mr W last updated on 04/Nov/23
F=x^2 +y^2 −z^2 −λ(x+2y+4z−21)  (∂F/∂x)=2x−λ=0 ⇒x=(λ/2)  (∂F/∂y)=2y−2λ=0 ⇒y=λ  (∂F/∂z)=−2z−4λ=0 ⇒z=−2λ  (λ/2)+2λ−8λ=21 ⇒λ=−((42)/(11))  ⇒x=−((21)/(11)), y=−((42)/(11)), z=((84)/(11))  f(x,y,z)_(min) =((21^2 +42^2 −84^2 )/(11^2 ))=−((441)/(11))
$${F}={x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{z}^{\mathrm{2}} −\lambda\left({x}+\mathrm{2}{y}+\mathrm{4}{z}−\mathrm{21}\right) \\ $$$$\frac{\partial{F}}{\partial{x}}=\mathrm{2}{x}−\lambda=\mathrm{0}\:\Rightarrow{x}=\frac{\lambda}{\mathrm{2}} \\ $$$$\frac{\partial{F}}{\partial{y}}=\mathrm{2}{y}−\mathrm{2}\lambda=\mathrm{0}\:\Rightarrow{y}=\lambda \\ $$$$\frac{\partial{F}}{\partial{z}}=−\mathrm{2}{z}−\mathrm{4}\lambda=\mathrm{0}\:\Rightarrow{z}=−\mathrm{2}\lambda \\ $$$$\frac{\lambda}{\mathrm{2}}+\mathrm{2}\lambda−\mathrm{8}\lambda=\mathrm{21}\:\Rightarrow\lambda=−\frac{\mathrm{42}}{\mathrm{11}} \\ $$$$\Rightarrow{x}=−\frac{\mathrm{21}}{\mathrm{11}},\:{y}=−\frac{\mathrm{42}}{\mathrm{11}},\:{z}=\frac{\mathrm{84}}{\mathrm{11}} \\ $$$${f}\left({x},{y},{z}\right)_{{min}} =\frac{\mathrm{21}^{\mathrm{2}} +\mathrm{42}^{\mathrm{2}} −\mathrm{84}^{\mathrm{2}} }{\mathrm{11}^{\mathrm{2}} }=−\frac{\mathrm{441}}{\mathrm{11}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *