Menu Close

x-




Question Number 199424 by cortano12 last updated on 03/Nov/23
   x
$$\:\:\:\boldsymbol{{x}} \\ $$
Answered by Frix last updated on 04/Nov/23
f(x)=((cos x)/3)(6sin^3  x −4sin^2  x +1)  f′(x)=−sin x (1−2sin x)(3−4sin^2  x)  The rest is easy.  I solved it for 0≤x<2π  f(0)=(1/3) (max)  f((π/6))=((√3)/8) (min)  f((π/3))=−((8−9(√3))/(24)) (max)  f(((2π)/3))=((8−9(√3))/(24)) (min)  f(((5π)/6))=−((√3)/8) (max)  f(π)=−(1/3) (min)  f(((4π)/3))=((8+9(√3))/(24)) (max)  f(((5π)/3))=−((8+9(√3))/(24)) (min)
$${f}\left({x}\right)=\frac{\mathrm{cos}\:{x}}{\mathrm{3}}\left(\mathrm{6sin}^{\mathrm{3}} \:{x}\:−\mathrm{4sin}^{\mathrm{2}} \:{x}\:+\mathrm{1}\right) \\ $$$${f}'\left({x}\right)=−\mathrm{sin}\:{x}\:\left(\mathrm{1}−\mathrm{2sin}\:{x}\right)\left(\mathrm{3}−\mathrm{4sin}^{\mathrm{2}} \:{x}\right) \\ $$$$\mathrm{The}\:\mathrm{rest}\:\mathrm{is}\:\mathrm{easy}. \\ $$$$\mathrm{I}\:\mathrm{solved}\:\mathrm{it}\:\mathrm{for}\:\mathrm{0}\leqslant{x}<\mathrm{2}\pi \\ $$$${f}\left(\mathrm{0}\right)=\frac{\mathrm{1}}{\mathrm{3}}\:\left(\mathrm{max}\right) \\ $$$${f}\left(\frac{\pi}{\mathrm{6}}\right)=\frac{\sqrt{\mathrm{3}}}{\mathrm{8}}\:\left(\mathrm{min}\right) \\ $$$${f}\left(\frac{\pi}{\mathrm{3}}\right)=−\frac{\mathrm{8}−\mathrm{9}\sqrt{\mathrm{3}}}{\mathrm{24}}\:\left(\mathrm{max}\right) \\ $$$${f}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)=\frac{\mathrm{8}−\mathrm{9}\sqrt{\mathrm{3}}}{\mathrm{24}}\:\left(\mathrm{min}\right) \\ $$$${f}\left(\frac{\mathrm{5}\pi}{\mathrm{6}}\right)=−\frac{\sqrt{\mathrm{3}}}{\mathrm{8}}\:\left(\mathrm{max}\right) \\ $$$${f}\left(\pi\right)=−\frac{\mathrm{1}}{\mathrm{3}}\:\left(\mathrm{min}\right) \\ $$$${f}\left(\frac{\mathrm{4}\pi}{\mathrm{3}}\right)=\frac{\mathrm{8}+\mathrm{9}\sqrt{\mathrm{3}}}{\mathrm{24}}\:\left(\mathrm{max}\right) \\ $$$${f}\left(\frac{\mathrm{5}\pi}{\mathrm{3}}\right)=−\frac{\mathrm{8}+\mathrm{9}\sqrt{\mathrm{3}}}{\mathrm{24}}\:\left(\mathrm{min}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *