Menu Close

n-4-an-3-bn-2-cn-d-k-2-k-N-a-b-c-d-




Question Number 199520 by tri26112004 last updated on 04/Nov/23
n^4 +an^3 +bn^2 +cn+d=k^2  (k∈N)  a,b,c,d=¿
$${n}^{\mathrm{4}} +{an}^{\mathrm{3}} +{bn}^{\mathrm{2}} +{cn}+{d}={k}^{\mathrm{2}} \:\left({k}\in{N}\right) \\ $$$${a},{b},{c},{d}=¿ \\ $$
Answered by Frix last updated on 04/Nov/23
You can choose n, a, b, c, k ∈N and find d.  There′s no unique solution.
$$\mathrm{You}\:\mathrm{can}\:\mathrm{choose}\:{n},\:{a},\:{b},\:{c},\:{k}\:\in\mathbb{N}\:\mathrm{and}\:\mathrm{find}\:{d}. \\ $$$$\mathrm{There}'\mathrm{s}\:\mathrm{no}\:\mathrm{unique}\:\mathrm{solution}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *