Question Number 199509 by hardmath last updated on 04/Nov/23
Commented by York12 last updated on 04/Nov/23
Commented by York12 last updated on 04/Nov/23
$$\mathrm{That}\:\mathrm{is}\:\mathrm{more}\:\mathrm{general}\: \\ $$
Answered by AST last updated on 04/Nov/23
$$\frac{{a}^{\mathrm{3}} }{\mathrm{4}{a}+{b}+{c}}+\frac{{a}\left(\mathrm{4}{a}+{b}+{c}\right)}{\mathrm{36}}\geqslant\mathrm{2}\sqrt{\frac{{a}^{\mathrm{4}} }{\mathrm{36}}}=\frac{{a}^{\mathrm{2}} }{\mathrm{3}}\left({true}\right) \\ $$$${Required}:\:\Sigma\frac{{a}\left(\mathrm{4}{a}+{b}+{c}\right)}{\mathrm{36}}\leqslant\Sigma\frac{{a}^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\Leftrightarrow\frac{\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+\mathrm{2}\left({ab}+{bc}+{ca}\right)}{\mathrm{6}}\leqslant\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$$$\Leftrightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \geqslant{ab}+{bc}+{ca}\left({true}\right) \\ $$$$\Rightarrow\Sigma\frac{{a}^{\mathrm{3}} }{\mathrm{4}{a}+{b}+{c}}\geqslant\Sigma\left(\frac{{a}^{\mathrm{2}} }{\mathrm{3}}\right)−\Sigma\frac{{a}\left(\mathrm{4}{a}+{b}+{c}\right)}{\mathrm{36}}\geqslant\Sigma\frac{{a}^{\mathrm{2}} }{\mathrm{3}}−\Sigma\frac{{a}^{\mathrm{2}} }{\mathrm{6}} \\ $$$$=\Sigma\frac{{a}^{\mathrm{2}} }{\mathrm{6}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare \\ $$
Commented by York12 last updated on 04/Nov/23
$$\mathrm{Good}\:\mathrm{JOB}\:! \\ $$
Commented by hardmath last updated on 05/Nov/23
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{ser} \\ $$
Answered by York12 last updated on 04/Nov/23
$$\mathrm{WLOG}\::{a}+{b}+{c}=\mathrm{3}\: \\ $$$$\Rightarrow\frac{{a}^{\mathrm{3}} }{\mathrm{4}{a}+{b}+{c}}+\frac{{b}^{\mathrm{3}} }{\mathrm{4}{b}+{a}+{c}}+\frac{{c}^{\mathrm{3}} }{\mathrm{4}{c}+{a}+{b}}=\frac{{a}^{\mathrm{3}} }{\mathrm{3}{a}+\mathrm{3}}+\frac{{b}^{\mathrm{3}} }{\mathrm{3}{b}+\mathrm{3}}+\frac{{c}^{\mathrm{3}} }{\mathrm{3}{c}+\mathrm{3}} \\ $$$$\mathrm{Assume}:\:\frac{{a}^{\mathrm{3}} }{\mathrm{3}{a}+\mathrm{3}}\geqslant{ma}^{\mathrm{2}} +{n}\:\Leftrightarrow{a}^{\mathrm{3}} \left(\mathrm{1}−\mathrm{3}{m}\right)−\mathrm{3}{ma}^{\mathrm{2}} −\mathrm{3}{an}−\mathrm{3}{n}\geqslant\mathrm{0} \\ $$$$\mathrm{p}\left(\mathrm{a}\right)={a}^{\mathrm{3}} \left(\mathrm{1}−\mathrm{3}{m}\right)−\mathrm{3}{ma}^{\mathrm{2}} −\mathrm{3}{an}−\mathrm{3}{n} \\ $$$$\mathrm{p}'\left(\mathrm{a}\right)=\mathrm{3}{a}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{3}{m}\right)−\mathrm{6}{ma}−\mathrm{3}{n} \\ $$$${p}\left(\mathrm{1}\right)=\mathrm{1}−\left(\mathrm{6}{m}+\mathrm{6}{n}\right)=\mathrm{0}\:\Rightarrow{m}+{n}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${p}'\left(\mathrm{1}\right)=\mathrm{3}−\mathrm{15m}−\mathrm{3n}\Rightarrow\mathrm{5}{m}+{n}=\mathrm{1} \\ $$$$\Rightarrow{m}=\frac{\mathrm{5}}{\mathrm{24}}\:{and}\:\:{n}=\frac{−\mathrm{1}}{\mathrm{24}}\: \\ $$$$\Rightarrow\mathrm{p}\left(\mathrm{a}\right)=\frac{\mathrm{1}}{\mathrm{24}}\left(\left({a}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{3}{a}+\mathrm{1}\right)\right)\geqslant\mathrm{0}\:\:\forall\:{a}\:\in\:\mathbb{R}^{+} \\ $$$$\Rightarrow\underset{\mathrm{cyc}} {\sum}\left(\frac{{a}^{\mathrm{3}} }{\mathrm{4}{a}+{b}+{c}}\right)\geqslant\frac{\mathrm{5}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−\mathrm{3}}{\mathrm{24}} \\ $$$${W}\mathrm{e}\:\mathrm{have}\:\left({a}+{b}+{c}\right)^{\mathrm{2}} =\mathrm{9}\leqslant\mathrm{3}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\geqslant\mathrm{3} \\ $$$$\Rightarrow\underset{\mathrm{cyc}} {\sum}\left(\frac{{a}^{\mathrm{3}} }{\mathrm{4}{a}+{b}+{c}}\right)\geqslant\frac{\mathrm{5}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−\mathrm{3}}{\mathrm{24}}\geqslant\frac{\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−\mathrm{3}+\mathrm{3}}{\mathrm{24}}=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\left({H}\mathrm{ence}\:\mathrm{proved}\right) \\ $$$$ \\ $$
Commented by hardmath last updated on 05/Nov/23
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{ser} \\ $$
Commented by York12 last updated on 05/Nov/23
$$\mathrm{ur}\:\mathrm{welcome} \\ $$