I-0-pi-2-tan-1-sinx-2-dx- Tinku Tara November 5, 2023 Integration 0 Comments FacebookTweetPin Question Number 199570 by universe last updated on 05/Nov/23 I=∫0π/2tan−1(sinx2)dx Answered by witcher3 last updated on 05/Nov/23 I(a)=∫0π2tan−1(asin(x))dxI=I(12)I(0)=0I′(a)=∫0π2sin(x)1+a2sin2(x)dx=∫01dy1+a2(1−y2)dy=∫01dy[1+a2−ay][a2+1+ay]=12a2+1∫01{11+a2−ay+1ay+1+a2}dy=12a1+a2ln(a+1+a21+a2−a)=I′(a)I(12)=∫01212a1+a2ln(a+1+a21+a2−a)daa=sh(x)⇒da=ch(x)dxI=∫0sh−(12)12sh(x)ln(exe−x)=∫0sh−(12)xex−e−xdx=12∫0sh−(12)xex−1+xex+1dx=I∫xex−1=xln(1−e−x)−∫ln(1−e−x)de−xe−x=xln(1−e−x)−Li2(e−x)∫xex+1dx=−xln(e−x+1)+Li2(−e−x)I=12(sh−(12)ln(1−e−sh−(12))−Li2(e−sh−(12))−sh−(12)ln(1+e−sh−(12))+Li2(−e−sh−(12))+Li2(1)−Li2(−1)=112(π2−6sinh−(2)csch−(2)) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-Q-lim-x-pi-4-1-sin-x-cos-x-tan-2x-Nice-Mathematics-Next Next post: 2-7-12-x-270-Find-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.