Menu Close

I-0-pi-2-tan-1-sinx-2-dx-




Question Number 199570 by universe last updated on 05/Nov/23
        I     =    ∫_0 ^(π/2) tan^(−1) (((sinx )/2))dx
I=0π/2tan1(sinx2)dx
Answered by witcher3 last updated on 05/Nov/23
I(a)=∫_0 ^(π/2) tan^(−1) (asin(x))dx  I=I((1/2))  I(0)=0  I′(a)=∫_0 ^(π/2) ((sin(x))/(1+a^2 sin^2 (x)))dx  =∫_0 ^1 (dy/(1+a^2 (1−y^2 )))dy  =∫_0 ^1 (dy/( [(√(1+a^2 ))−ay][(√(a^2 +1))+ay]))  =(1/(2(√(a^2 +1))))∫_0 ^1 {(1/( (√(1+a^2 ))−ay))+(1/(ay+(√(1+a^2 ))))}dy  =(1/(2a(√(1+a^2 ))))ln(((a+(√(1+a^2 )))/( (√(1+a^2 ))−a)))=I′(a)  I((1/2))=∫_0 ^(1/2) (1/(2a(√(1+a^2 ))))ln(((a+(√(1+a^2 )))/( (√(1+a^2 ))−a)))da  a=sh(x)⇒da=ch(x)dx  I=∫_0 ^(sh^− ((1/2))) (1/(2sh(x)))ln((e^x /e^(−x) ))=∫_0 ^(sh^− ((1/2))) (x/(e^x −e^(−x) ))dx  =(1/2)∫_0 ^(sh^− ((1/2))) (x/(e^x −1))+(x/(e^x +1))dx=I  ∫(x/(e^x −1))=xln(1−e^(−x) )−∫((ln(1−e^(−x) )de^(−x) )/e^(−x) )  =xln(1−e^(−x) )−Li_2 (e^(−x) )  ∫(x/(e^x +1))dx=−xln(e^(−x) +1)+Li_2 (−e^(−x) )  I=(1/2)(sh^− ((1/2))ln(1−e^(−sh^− ((1/2))) )−Li_2 (e^(−sh^− ((1/2))) )  −sh^− ((1/2))ln(1+e^(−sh^− ((1/2))) )+Li_2 (−e^(−sh^− ((1/2))) )+Li_2 (1)−Li_2 (−1)  =(1/(12))(π^2 −6sinh^− (2)csch^− (2))
I(a)=0π2tan1(asin(x))dxI=I(12)I(0)=0I(a)=0π2sin(x)1+a2sin2(x)dx=01dy1+a2(1y2)dy=01dy[1+a2ay][a2+1+ay]=12a2+101{11+a2ay+1ay+1+a2}dy=12a1+a2ln(a+1+a21+a2a)=I(a)I(12)=01212a1+a2ln(a+1+a21+a2a)daa=sh(x)da=ch(x)dxI=0sh(12)12sh(x)ln(exex)=0sh(12)xexexdx=120sh(12)xex1+xex+1dx=Ixex1=xln(1ex)ln(1ex)dexex=xln(1ex)Li2(ex)xex+1dx=xln(ex+1)+Li2(ex)I=12(sh(12)ln(1esh(12))Li2(esh(12))sh(12)ln(1+esh(12))+Li2(esh(12))+Li2(1)Li2(1)=112(π26sinh(2)csch(2))

Leave a Reply

Your email address will not be published. Required fields are marked *