Menu Close

Question-199547




Question Number 199547 by hardmath last updated on 05/Nov/23
Answered by mr W last updated on 05/Nov/23
1)  n×n!=(n+1−1)×n!=(n+1)!−n!  1×1!+2×2!+...+2022×2022!  =2!−1!+3!−2!+....+2023!−2022!  =2023!−1!  ⇒ab=2023×1=2023    2)  f(a+b)=f(a)+f(b)+ab  f(2a)=2f(a)+a^2     f(2)=2f(1)+1^2 =5 ⇒f(1)=2  f(4)=2f(2)+2^2 =2×5+4=14  f(5)=f(4)+f(1)+4×1=14+2+4=20  f(10)=2f(5)+5^2 =2×20+25=65  f(11)=f(10)+f(1)+10×1=65+2+10=77    or generally f(x)=((x(x+3))/2)  ⇒f(11)=((11×14)/2)=77
1)n×n!=(n+11)×n!=(n+1)!n!1×1!+2×2!++2022×2022!=2!1!+3!2!+.+2023!2022!=2023!1!ab=2023×1=20232)f(a+b)=f(a)+f(b)+abf(2a)=2f(a)+a2f(2)=2f(1)+12=5f(1)=2f(4)=2f(2)+22=2×5+4=14f(5)=f(4)+f(1)+4×1=14+2+4=20f(10)=2f(5)+52=2×20+25=65f(11)=f(10)+f(1)+10×1=65+2+10=77orgenerallyf(x)=x(x+3)2f(11)=11×142=77
Commented by hardmath last updated on 05/Nov/23
thank you dear professor cool
thankyoudearprofessorcool
Commented by hardmath last updated on 05/Nov/23
thank you dear professor perfect solutions
thankyoudearprofessorperfectsolutions
Commented by hardmath last updated on 05/Nov/23
dear professor,  how did you get the generalized solution  and is it always true?
dearprofessor,howdidyougetthegeneralizedsolutionandisitalwaystrue?
Commented by mr W last updated on 05/Nov/23
since f(x+y)=f(x)+f(y)+xy, you can  assume f(x)=ax^2 +bx+c with f(2)=5.  then you get a=(1/2), b=(3/2), c=0.
sincef(x+y)=f(x)+f(y)+xy,youcanassumef(x)=ax2+bx+cwithf(2)=5.thenyougeta=12,b=32,c=0.
Answered by AST last updated on 05/Nov/23
f(4)=10+4=14⇒f(8)=44  5=2f(1)+1⇒f(1)=2;f(3)=7+2=9  f(11)=44+9+24=77
f(4)=10+4=14f(8)=445=2f(1)+1f(1)=2;f(3)=7+2=9f(11)=44+9+24=77
Commented by hardmath last updated on 05/Nov/23
thank you professor
thankyouprofessor
Answered by ajfour last updated on 05/Nov/23
2.  f(x+h)−f(x)=f(h)+hx  f ′(x)=((f(0))/h)+x  ⇒  f(0)=0  f(x)=(x^2 /2)+kx  as   f(2)=(2^2 /2)+2k=5    ⇒  k=(3/2)  f(x)=(x^2 /2)+((3x)/2)=((x(x+3))/2)
2.f(x+h)f(x)=f(h)+hxf(x)=f(0)h+xf(0)=0f(x)=x22+kxasf(2)=222+2k=5k=32f(x)=x22+3x2=x(x+3)2
Commented by hardmath last updated on 05/Nov/23
thank you professor
thankyouprofessor
Commented by AST last updated on 05/Nov/23
f^′ (x)=x+c⇒f(x)=∫(x+c)=(x^2 /2)+cx+k  f(0)=0⇒k=0;f(2)=5⇒c=(3/2)⇒f(x)=((x^2 +3x)/2)
f(x)=x+cf(x)=(x+c)=x22+cx+kf(0)=0k=0;f(2)=5c=32f(x)=x2+3x2

Leave a Reply

Your email address will not be published. Required fields are marked *