Menu Close

Question-199592




Question Number 199592 by hardmath last updated on 05/Nov/23
Commented by mr W last updated on 06/Nov/23
impossible! you can not get a sum of  270 !
$${impossible}!\:{you}\:{can}\:{not}\:{get}\:{a}\:{sum}\:{of} \\ $$$$\mathrm{270}\:! \\ $$
Commented by mr W last updated on 05/Nov/23
the sequence is not clearly specified!  2, 7, 9, 16?, 25?, ....
$${the}\:{sequence}\:{is}\:{not}\:{clearly}\:{specified}! \\ $$$$\mathrm{2},\:\mathrm{7},\:\mathrm{9},\:\mathrm{16}?,\:\mathrm{25}?,\:…. \\ $$
Commented by hardmath last updated on 05/Nov/23
sorry dear professor, thank you  2 + 7 + 12 + ... + x = 270
$$\mathrm{sorry}\:\mathrm{dear}\:\mathrm{professor},\:\mathrm{thank}\:\mathrm{you} \\ $$$$\mathrm{2}\:+\:\mathrm{7}\:+\:\mathrm{12}\:+\:…\:+\:\mathrm{x}\:=\:\mathrm{270} \\ $$
Commented by hardmath last updated on 06/Nov/23
thank you dear professor
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$
Commented by hardmath last updated on 06/Nov/23
my dear professor,  how we write it is correct
$$\mathrm{my}\:\mathrm{dear}\:\mathrm{professor}, \\ $$$$\mathrm{how}\:\mathrm{we}\:\mathrm{write}\:\mathrm{it}\:\mathrm{is}\:\mathrm{correct} \\ $$
Commented by mr W last updated on 06/Nov/23
for example:  2, 7, 9, 16, 25,...., x=273  2, 7, 12, 17,...., x=297
$${for}\:{example}: \\ $$$$\mathrm{2},\:\mathrm{7},\:\mathrm{9},\:\mathrm{16},\:\mathrm{25},….,\:{x}=\mathrm{273} \\ $$$$\mathrm{2},\:\mathrm{7},\:\mathrm{12},\:\mathrm{17},….,\:{x}=\mathrm{297} \\ $$
Commented by hardmath last updated on 06/Nov/23
my dear professor, sorry  the first one is wrong, it does not form a  series
$$\mathrm{my}\:\mathrm{dear}\:\mathrm{professor},\:\mathrm{sorry} \\ $$$$\mathrm{the}\:\mathrm{first}\:\mathrm{one}\:\mathrm{is}\:\mathrm{wrong},\:\mathrm{it}\:\mathrm{does}\:\mathrm{not}\:\mathrm{form}\:\mathrm{a} \\ $$$$\mathrm{series} \\ $$
Commented by mr W last updated on 06/Nov/23
it′s a fibonacci sequence.  2+7=9  7+9=16  9+16=25  ...  a_(n−2) +a_(n−1) =a_n
$${it}'{s}\:{a}\:{fibonacci}\:{sequence}. \\ $$$$\mathrm{2}+\mathrm{7}=\mathrm{9} \\ $$$$\mathrm{7}+\mathrm{9}=\mathrm{16} \\ $$$$\mathrm{9}+\mathrm{16}=\mathrm{25} \\ $$$$… \\ $$$${a}_{{n}−\mathrm{2}} +{a}_{{n}−\mathrm{1}} ={a}_{{n}} \\ $$
Commented by hardmath last updated on 06/Nov/23
It is obvious, thank you my dear prafessor
$$\mathrm{It}\:\mathrm{is}\:\mathrm{obvious},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{prafessor} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *