Menu Close

Given-Fibonacci-series-F-1-F-2-1-and-F-n-2-F-n-1-F-n-for-n-gt-0-Find-the-remainder-F-2022-divides-by-5-




Question Number 199625 by cortano12 last updated on 06/Nov/23
Given Fibonacci series    F_1 =F_2 = 1 and F_(n+2) = F_(n+1) +F_n    for n>0. Find the remainder    F_(2022)  divides by 5
GivenFibonacciseriesF1=F2=1andFn+2=Fn+1+Fnforn>0.FindtheremainderF2022dividesby5
Answered by witcher3 last updated on 06/Nov/23
F_3 =2,f_4 =3,f_5 =5,f_6 =8,f_7 =13,f_8 =21,f_9 =34  f_(10) =55,f_(11) =89,f_(12) =144,f_(13) =233,  X^2 −X−1=0  X=((1+(√5))/2),((1−(√5))/2)  a(((1+(√5))/2))^n +b(((1−(√5))/2))^n =u_n   ((a+b)/2)+((√5)/2)(a−b)=1  a(((6+2(√5))/4))+b(((6−2(√5))/4))=1  ((√5)/2)(a−b)+(3/2)(a+b)=1  a+b=0⇒a=−b  a=(1/( (√5)))  f_n =(1/( (√5)))[((((√5)+1)/2))^n −(((1−(√5))^n )/2^n )]  f_n =(1/2^n )(1/( (√5)))(Σ_(k=0) ^n ( ((n),(k) )(((√5))^k −(−(√5))^k )  2^n f_n =2Σ_(k=0) ^([((n−1)/2)])  ((n),((2k+1)) )(5^k )≡2n[5]  n=4k⇒2^n ≡1[5],2^n f_n ≡f_n [5]  n=4k+1⇒2^n ≡2[5],2^n f_n ≡2f_n [5]  n=4k+2⇒2^n f_n ≡4f_n [5]  n≡4k+3⇒2^n f_n ≡3f_n [5]  n=2022≡2[4]  2^(2022) ≡4[5]⇒4f_(2022) ≡2.2022[5]  ⇔4f_(2022) ≡4[5]⇔f_(2002) ≡1[5]  mor generaly  2^n f_n ≡2n[5],2n=5g+r  n=4k+t⇒2^(4k+t) ≡2^t [5]  ⇔2^n f_n ≡2^t f_n ≡2n[5]≡r[5]  2^t f_n ≡r[5]⇒2^(4−t) .2^t f_n ≡2^(4−t) r[5]  ⇔f_n =2^(4−t) r[5],Exempl  n=13,t=1,2.13=26⇒r=1  f_(13) ≡2^(4−1) .1[5]≡8=3[5].true  f_(13) =233
F3=2,f4=3,f5=5,f6=8,f7=13,f8=21,f9=34f10=55,f11=89,f12=144,f13=233,X2X1=0X=1+52,152a(1+52)n+b(152)n=una+b2+52(ab)=1a(6+254)+b(6254)=152(ab)+32(a+b)=1a+b=0a=ba=15fn=15[(5+12)n(15)n2n]fn=12n15(nk=0((nk)((5)k(5)k)2nfn=2[n12]k=0(n2k+1)(5k)2n[5]n=4k2n1[5],2nfnfn[5]n=4k+12n2[5],2nfn2fn[5]n=4k+22nfn4fn[5]n4k+32nfn3fn[5]n=20222[4]220224[5]4f20222.2022[5]4f20224[5]f20021[5]morgeneraly2nfn2n[5],2n=5g+rn=4k+t24k+t2t[5]2nfn2tfn2n[5]r[5]2tfnr[5]24t.2tfn24tr[5]fn=24tr[5],Exempln=13,t=1,2.13=26r=1f13241.1[5]8=3[5].truef13=233

Leave a Reply

Your email address will not be published. Required fields are marked *