Question Number 199732 by Rupesh123 last updated on 08/Nov/23
Answered by Rasheed.Sindhi last updated on 08/Nov/23
$${y}=\frac{{x}^{\mathrm{2}} +\mathrm{2}}{{x}+\mathrm{3}}=\frac{{x}^{\mathrm{2}} −\mathrm{9}+\mathrm{9}+\mathrm{2}}{{x}+\mathrm{3}} \\ $$$$\:\:\:=\frac{\left({x}−\mathrm{3}\right)\left({x}+\mathrm{3}\right)+\mathrm{11}}{{x}+\mathrm{3}} \\ $$$$=\left({x}−\mathrm{3}\right)+\frac{\mathrm{11}}{{x}+\mathrm{3}}\in\mathbb{Z}\Rightarrow\left({x}+\mathrm{3}\right)\mid\mathrm{11} \\ $$$${x}+\mathrm{3}=\pm\mathrm{1},\pm\mathrm{11} \\ $$$${x}=−\mathrm{2},−\mathrm{4},\mathrm{8},−\mathrm{14} \\ $$$${y}=\frac{{x}^{\mathrm{2}} +\mathrm{2}}{{x}+\mathrm{3}} \\ $$$${y}=\frac{\left(−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{2}}{\left(−\mathrm{2}\right)+\mathrm{3}},\frac{\left(−\mathrm{4}\right)^{\mathrm{2}} +\mathrm{2}}{\left(−\mathrm{4}\right)+\mathrm{3}},\frac{\left(\mathrm{8}\right)^{\mathrm{2}} +\mathrm{2}}{\left(\mathrm{8}\right)+\mathrm{3}},\frac{\left(−\mathrm{14}\right)^{\mathrm{2}} +\mathrm{2}}{\left(−\mathrm{14}\right)+\mathrm{3}} \\ $$$$\:=\mathrm{6},−\mathrm{18},\mathrm{6},−\mathrm{18} \\ $$$$\left({x},{y}\right)=\left(−\mathrm{2},\mathrm{6}\right),\left(−\mathrm{4},−\mathrm{18}\right),\left(\mathrm{8},\mathrm{6}\right),\left(−\mathrm{14},−\mathrm{18}\right) \\ $$
Commented by Rupesh123 last updated on 08/Nov/23
Perfect, sir!
Answered by Rasheed.Sindhi last updated on 08/Nov/23
$$\boldsymbol{\mathrm{AnOther}}\:\boldsymbol{\mathrm{Way}} \\ $$$${y}\left({x}+\mathrm{3}\right)−{x}^{\mathrm{2}} =\mathrm{2} \\ $$$${y}\left({x}+\mathrm{3}\right)−{x}^{\mathrm{2}} +\mathrm{9}=\mathrm{2}+\mathrm{9} \\ $$$${y}\left({x}+\mathrm{3}\right)−\left({x}^{\mathrm{2}} −\mathrm{9}\right)=\mathrm{11} \\ $$$${y}\left({x}+\mathrm{3}\right)−\left({x}−\mathrm{3}\right)\left({x}+\mathrm{3}\right)=\mathrm{11} \\ $$$$\left({x}+\mathrm{3}\right)\left({y}−{x}+\mathrm{3}\right)=\mathrm{11}=\mathrm{1}×\mathrm{11}=−\mathrm{1}×−\mathrm{11} \\ $$$$\begin{cases}{{x}+\mathrm{3}=\mathrm{1}\:\wedge\:{y}−{x}+\mathrm{3}=\mathrm{11}}\\{{x}+\mathrm{3}=\mathrm{11}\:\wedge\:{y}−{x}+\mathrm{3}=\mathrm{1}}\\{{x}+\mathrm{3}=−\mathrm{1}\:\wedge\:{y}−{x}+\mathrm{3}=−\mathrm{11}}\\{{x}+\mathrm{3}=−\mathrm{11}\:\wedge\:{y}−{x}+\mathrm{3}=−\mathrm{1}}\end{cases}\: \\ $$$$\begin{cases}{{x}=−\mathrm{2}\:\wedge\:{y}={x}+\mathrm{8}=−\mathrm{2}+\mathrm{8}=\mathrm{6}}\\{{x}=\mathrm{8}\:\wedge\:{y}={x}−\mathrm{2}=\mathrm{8}−\mathrm{2}=\mathrm{6}}\\{{x}=−\mathrm{4}\:\wedge\:{y}={x}−\mathrm{14}=−\mathrm{4}−\mathrm{14}=−\mathrm{18}}\\{{x}=−\mathrm{14}\:\wedge\:{y}={x}−\mathrm{4}=−\mathrm{14}−\mathrm{4}=−\mathrm{18}}\end{cases}\: \\ $$$$\left({x},{y}\right)=\left(−\mathrm{2},\mathrm{6}\right),\left(\mathrm{8},\mathrm{6}\right),\left(−\mathrm{4},−\mathrm{18}\right),\left(−\mathrm{14},−\mathrm{18}\right) \\ $$