Menu Close

study-the-convergence-n-o-sin-pi-4n-2-2-




Question Number 199707 by SANOGO last updated on 08/Nov/23
study the convergence  Σ_(n≥o) ^ sin(π(√(4n^2 +2    ))
studytheconvergencenosin(π4n2+2
Answered by witcher3 last updated on 09/Nov/23
(√(4n^2 +2))=2n(√(1+(1/(2n^2 ))))  sin(2πn(√(1+(1/(2n^2 )))))=sin(2πn(√(1+(1/(2n^2 ))))−2πn)  =sin(2πn((√(1+(1/(2n^2 ))))−1)  (√(1+(1/(2n^2 ))))−1=(1/(2n^2 ((√(1+(1/(2n^2 ))))+1)))≤(1/(4n^2 ))  sin(0)≤sin(2πn(√(1+(1/(2n^2 ))))−2πn)≤sin((π/(2n^2 )))≤sin((π/2))  positiv serie  2πn((√(1+(1/(2n^2 )))))−2πn  =2πn(1+(1/(2n^2 ))−1+o((1/n^2 ))=(π/n)+o((1/n))  sin((π/n)+o((1/n)))∼(π/n);Σ(π/n)  dv⇒Σsin(π(√(4n^2 +2))) dv
4n2+2=2n1+12n2sin(2πn1+12n2)=sin(2πn1+12n22πn)=sin(2πn(1+12n21)1+12n21=12n2(1+12n2+1)14n2sin(0)sin(2πn1+12n22πn)sin(π2n2)sin(π2)positivserie2πn(1+12n2)2πn=2πn(1+12n21+o(1n2)=πn+o(1n)sin(πn+o(1n))πn;ΣπndvΣsin(π4n2+2)dv

Leave a Reply

Your email address will not be published. Required fields are marked *