Menu Close

consider-the-taylor-expansion-of-the-function-1-1-x-3-centered-at-x-1-2-then-the-radius-of-convergence-of-the-power-series-repersentation-of-the-function-is-




Question Number 199862 by universe last updated on 10/Nov/23
consider the taylor expansion of the function (1/(1+x^3 ))  centered at x = 1/2 then the radius of convergence  of the power series repersentation of the function is
$$\mathrm{consider}\:\mathrm{the}\:\mathrm{taylor}\:\mathrm{expansion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} } \\ $$$$\mathrm{centered}\:\mathrm{at}\:\mathrm{x}\:=\:\mathrm{1}/\mathrm{2}\:\mathrm{then}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{convergence} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{power}\:\mathrm{series}\:\mathrm{repersentation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{is} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *