Menu Close

Find-the-remainder-n-1-2019-n-4-when-divide-by-53-




Question Number 199864 by cortano12 last updated on 10/Nov/23
   Find the remainder Σ_(n=1) ^(2019) n^4  when    divide by 53
Findtheremainder2019n=1n4whendivideby53
Answered by AST last updated on 10/Nov/23
Σ_(n=1) ^(2019) n^4 =((2019(2020)[2(2019)+1][3(2019)^2 +3(2019)−1])/(30))  ≡((5(6)[2(5)+1][3(5)^2 +3(5)−1]=30(11)(89)≡^(53) 8)/(30))  ⇒(8/(30))≡x(mod 53)⇒15x≡4(mod 53)⇒x≡^(53) 25
2019n=1n4=2019(2020)[2(2019)+1][3(2019)2+3(2019)1]305(6)[2(5)+1][3(5)2+3(5)1]=30(11)(89)53830830x(mod53)15x4(mod53)x5325
Commented by cortano12 last updated on 10/Nov/23
i got 25
igot25
Commented by AST last updated on 10/Nov/23
≡38×2(1^4 +2^4 +3^4 +4^4 +5^4 +6^4 +...+25^4 +26^4 )  +1^4 +2^4 +3^4 +4^4 +5^4 ≡38×2(25+6^4 +7^4 +...+26^4 )  +25≡38×2(25+27+21+44+42)+25≡^(53) 25    something like this?
38×2(14+24+34+44+54+64++254+264)+14+24+34+44+5438×2(25+64+74++264)+2538×2(25+27+21+44+42)+255325somethinglikethis?
Commented by cortano12 last updated on 11/Nov/23
yes
yes

Leave a Reply

Your email address will not be published. Required fields are marked *