Menu Close

Let-C-be-the-circle-with-the-center-2-3-and-radius-5-a-show-that-P-5-7-lies-on-C-and-find-the-equation-of-the-tangent-at-P-b-show-that-the-line-3x-4y-31-0-is-a-tangent-to-C-




Question Number 199834 by Calculusboy last updated on 10/Nov/23
Let C be the circle with the center (2,3) and radius 5  a) show that P(5,7) lies on C and find the  equation of the tangent at P  b) show that the line 3x−4y+31=0 is a tangent to C
LetCbethecirclewiththecenter(2,3)andradius5a)showthatP(5,7)liesonCandfindtheequationofthetangentatPb)showthattheline3x4y+31=0isatangenttoC
Commented by Calculusboy last updated on 10/Nov/23
okay sir
okaysir
Answered by cortano12 last updated on 10/Nov/23
(a) (5−2)^2 +(7−3)^2 = 9+16=25=5^2 =R^2    so that P(5,7) lies on circle  (b) equation of tangent at P(5,7)   is (5−2)(x−2)+(7−3)(y−3)=25   3x−6+4y−12=25   3x+4y= 43  (c) the line 3x−4y+31=0   touching the circle so     ∣((3.2−4.3+31)/5)∣=((25)/5)=5=R
(a)(52)2+(73)2=9+16=25=52=R2sothatP(5,7)liesoncircle(b)equationoftangentatP(5,7)is(52)(x2)+(73)(y3)=253x6+4y12=253x+4y=43(c)theline3x4y+31=0touchingthecircleso3.24.3+315∣=255=5=R
Commented by Calculusboy last updated on 10/Nov/23
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *