Menu Close

lim-x-0-1-ln-1-x-1-ln-x-1-x-2-




Question Number 199843 by universe last updated on 10/Nov/23
    lim_(x→0)  ((1/(ln(1+x) ))−(1/(ln(x+(√(1+x^2 )) )))) = ??
$$\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{ln}\left(\mathrm{1}+{x}\right)\:}−\frac{\mathrm{1}}{\mathrm{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\right)}\right)\:=\:?? \\ $$
Answered by witcher3 last updated on 10/Nov/23
=((ln(x+(√(1+x^2 )))−ln(1+x))/(ln((1+x)ln(x+(√(1+x^2 )))))=  ln(x+(√(1+x^2 )))=ln(1+x+o(x)∼x  ln(1+x)∼x  ∼((ln(x+(√(1+x^2 )))−ln(1+x))/x^2 )=((ln(x+1+(x^2 /2)+o(x^2 ))−ln(1+x))/x^2 )  =lim_(x→0) ((x+(x^2 /2)−(1/2)(x^2 )+o(x^2 )−(x−(x^2 /2)+o(x^2 )))/x^2 )  =lim_(x→0) ((x^2 +o(x^2 ))/(2x^2 ))=lim_(x→0) (1/2)+o(1)=(1/2)
$$=\frac{\mathrm{ln}\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)−\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{ln}\left(\left(\mathrm{1}+\mathrm{x}\right)\mathrm{ln}\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\right.}= \\ $$$$\mathrm{ln}\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)=\mathrm{ln}\left(\mathrm{1}+\mathrm{x}+\mathrm{o}\left(\mathrm{x}\right)\sim\mathrm{x}\right. \\ $$$$\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\sim\mathrm{x} \\ $$$$\sim\frac{\mathrm{ln}\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)−\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} }=\frac{\mathrm{ln}\left(\mathrm{x}+\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{o}\left(\mathrm{x}^{\mathrm{2}} \right)\right)−\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{x}^{\mathrm{2}} \right)+\mathrm{o}\left(\mathrm{x}^{\mathrm{2}} \right)−\left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{o}\left(\mathrm{x}^{\mathrm{2}} \right)\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{o}\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{2x}^{\mathrm{2}} }=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{o}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *