Menu Close

Question-199837




Question Number 199837 by Calculusboy last updated on 10/Nov/23
Answered by AST last updated on 10/Nov/23
(√(a+(√b)))=p;(√(a−(√b)))=q⇒p^2 +q^2 =2a;p^2 q^2 =a^2 −b  ⇒pq=(√(a^2 −b))⇒(p+q)^2 =2a+2(√(a^2 −b))  ⇒p+q=(√2)(a+(√(a^2 −b)))  ⇒p,q are roots of   x^2 −(√2)((√(a+(√(a^2 −b)))))x+(√(a^2 −b))  ⇒p,q=(((√2)((√(a+(√(a^2 −b))))+_− (√(a−(√(a^2 −b))))))/2)  ⇒p=a+(√b)=(√((a+(√(a^2 −b)))/2))+(√((a−(√(a^2 −b)))/2))
$$\sqrt{{a}+\sqrt{{b}}}={p};\sqrt{{a}−\sqrt{{b}}}={q}\Rightarrow{p}^{\mathrm{2}} +{q}^{\mathrm{2}} =\mathrm{2}{a};{p}^{\mathrm{2}} {q}^{\mathrm{2}} ={a}^{\mathrm{2}} −{b} \\ $$$$\Rightarrow{pq}=\sqrt{{a}^{\mathrm{2}} −{b}}\Rightarrow\left({p}+{q}\right)^{\mathrm{2}} =\mathrm{2}{a}+\mathrm{2}\sqrt{{a}^{\mathrm{2}} −{b}} \\ $$$$\Rightarrow{p}+{q}=\sqrt{\mathrm{2}}\left({a}+\sqrt{{a}^{\mathrm{2}} −{b}}\right) \\ $$$$\Rightarrow{p},{q}\:{are}\:{roots}\:{of}\: \\ $$$${x}^{\mathrm{2}} −\sqrt{\mathrm{2}}\left(\sqrt{{a}+\sqrt{{a}^{\mathrm{2}} −{b}}}\right){x}+\sqrt{{a}^{\mathrm{2}} −{b}} \\ $$$$\Rightarrow{p},{q}=\frac{\sqrt{\mathrm{2}}\left(\sqrt{{a}+\sqrt{{a}^{\mathrm{2}} −{b}}}\underset{−} {+}\sqrt{{a}−\sqrt{{a}^{\mathrm{2}} −{b}}}\right)}{\mathrm{2}} \\ $$$$\Rightarrow{p}={a}+\sqrt{{b}}=\sqrt{\frac{{a}+\sqrt{{a}^{\mathrm{2}} −{b}}}{\mathrm{2}}}+\sqrt{\frac{{a}−\sqrt{{a}^{\mathrm{2}} −{b}}}{\mathrm{2}}} \\ $$
Commented by Calculusboy last updated on 11/Nov/23
thanks sir
$$\boldsymbol{{thanks}}\:\boldsymbol{{sir}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *