Menu Close

Question-199838




Question Number 199838 by Calculusboy last updated on 10/Nov/23
Answered by Frix last updated on 10/Nov/23
y=((xy))^(1/x)   y=x^(1/(x−1))   (x+5)^x =23x+1+x^(1/(x−1))   Trying x=1, 2, 3  ⇒x=2  Σ_(i=−1) ^n  ((4i+7)/4^(i+1) ) =((52)/9)−(((12n+37))/(4^n 36))  E=Σ_(i=−1) ^∞  ((4i+7)/4^(i+1) ) =((52)/9)
$${y}=\sqrt[{{x}}]{{xy}} \\ $$$${y}={x}^{\frac{\mathrm{1}}{{x}−\mathrm{1}}} \\ $$$$\left({x}+\mathrm{5}\right)^{{x}} =\mathrm{23}{x}+\mathrm{1}+{x}^{\frac{\mathrm{1}}{{x}−\mathrm{1}}} \\ $$$$\mathrm{Trying}\:{x}=\mathrm{1},\:\mathrm{2},\:\mathrm{3} \\ $$$$\Rightarrow{x}=\mathrm{2} \\ $$$$\underset{{i}=−\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{4}{i}+\mathrm{7}}{\mathrm{4}^{{i}+\mathrm{1}} }\:=\frac{\mathrm{52}}{\mathrm{9}}−\frac{\left(\mathrm{12}{n}+\mathrm{37}\right)}{\mathrm{4}^{{n}} \mathrm{36}} \\ $$$${E}=\underset{{i}=−\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{4}{i}+\mathrm{7}}{\mathrm{4}^{{i}+\mathrm{1}} }\:=\frac{\mathrm{52}}{\mathrm{9}} \\ $$
Commented by Calculusboy last updated on 11/Nov/23
thanks sir
$$\boldsymbol{{thanks}}\:\boldsymbol{{sir}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *