Menu Close

By-strong-induction-prove-that-any-natural-number-equal-to-or-bigger-than-8-can-be-written-as-3a-5b-where-a-and-b-are-non-negative-integers-




Question Number 200041 by depressiveshrek last updated on 12/Nov/23
By strong induction prove that any  natural number equal to or bigger than  8 can be written as 3a+5b where a and b  are non−negative integers.
Bystronginductionprovethatanynaturalnumberequaltoorbiggerthan8canbewrittenas3a+5bwhereaandbarenonnegativeintegers.
Answered by des_ last updated on 12/Nov/23
n ≥ 8 ⇒ n = 3a + 5b, a,b ≥ 0;    1) n = 8:  n = 3(1) + 5(1)    2) n ⇒ n + 1:  2.1) n = 3a + 5b, b > 0:  n + 1 = 3a + 5b + 1 = 3(a + 2) + 5(b − 1);  2.2) n = 3a + 5b, b = 0:  n = 3a ⇒ a ≥ 3;  n + 1 = 3a + 1 = 3(a − 3) + 5(2);    Thus n ≥ 8 ⇒ n = 3a + 5b, a,b ≥ 0
n8n=3a+5b,a,b0;1)n=8:n=3(1)+5(1)2)nn+1:2.1)n=3a+5b,b>0:n+1=3a+5b+1=3(a+2)+5(b1);2.2)n=3a+5b,b=0:n=3aa3;n+1=3a+1=3(a3)+5(2);Thusn8n=3a+5b,a,b0
Answered by witcher3 last updated on 12/Nov/23
show for n∈[8,16]..By tcheking  for all  16≤k≤n  ⇒P(k) True  p(n+1)  n+1=[((n+1)/2)]_m +(n−[((n+1)/2)])_(=d)   8≤m,d<n  m=3a+5d  d=3a′+5d′  m+d=n=3(a+a′)+5(d+d′)
showforn[8,16]..Bytchekingforall16knP(k)Truep(n+1)n+1=[n+12]m+(n[n+12])=d8m,d<nm=3a+5dd=3a+5dm+d=n=3(a+a)+5(d+d)
Answered by witcher3 last updated on 12/Nov/23
we can show this easly  n=8k+r  k≥1 for n≥8  r=0,3.0+5.0  r=1=3.2+5(−1)  r=2 5.1+3(−1)  r=3=3.0  r=4=3.3+5(−1)  r=5=5.1+3.0  r=6,3.2+5(0)  r=7,5.2+3(−1)  ∀r∈[0,7]  r=3.a+b.5   min(a,b)≥−1  n=k(3+5)+3a+5b=3(a+k)+5(k+b)  a+k≥k−1≥0  b+k≥k−1≥0..True
wecanshowthiseaslyn=8k+rk1forn8r=0,3.0+5.0r=1=3.2+5(1)r=25.1+3(1)r=3=3.0r=4=3.3+5(1)r=5=5.1+3.0r=6,3.2+5(0)r=7,5.2+3(1)r[0,7]r=3.a+b.5min(a,b)1n=k(3+5)+3a+5b=3(a+k)+5(k+b)a+kk10b+kk10..True

Leave a Reply

Your email address will not be published. Required fields are marked *