Menu Close

Question-200048




Question Number 200048 by Calculusboy last updated on 12/Nov/23
Commented by 0670322918 last updated on 13/Nov/23
∫((tan^(−1) (x))/(∫tan^(−1) (x)dx))dx=  f(x)=∫tan^(−1) (x)dx=xtan^(−1) (x)−(1/2)ln(x^2 +1)+c  f′(x)=tan^(−1) (x)  ∫((f′(x))/(f(x)))dx=ln∣f(x)∣+c  ∫((tan^(−1) (x))/(∫tan^(−1) (x)dx))dx=ln∣xtan^(−1) (x)−(1/2)ln(x^2 +1)+c∣+c_1
tan1(x)tan1(x)dxdx=f(x)=tan1(x)dx=xtan1(x)12ln(x2+1)+cf(x)=tan1(x)f(x)f(x)dx=lnf(x)+ctan1(x)tan1(x)dxdx=lnxtan1(x)12ln(x2+1)+c+c1
Commented by Calculusboy last updated on 13/Nov/23
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *