Menu Close

if-1-is-a-root-of-unity-aand-z-is-a-complex-number-such-that-z-1-then-2-3-4z-2-4-3-2-z-2z-




Question Number 200087 by universe last updated on 13/Nov/23
  if ω ≠ 1 is a root of unity aand z is a   complex number such that ∣z∣ = 1 then    ∣((2+3ω+4zω^2 )/(4ω+3ω^2 z+2z))∣= ?
ifω1isarootofunityaandzisacomplexnumbersuchthatz=1then2+3ω+4zω24ω+3ω2z+2z∣=?
Commented by Frix last updated on 13/Nov/23
Btw. it′s also 1 with w=1
Btw.itsalso1withw=1
Commented by Frix last updated on 13/Nov/23
...now I think we can easily calculate this  with w=1. We′re rotating the coordinate  system by ±120°. We don′t have to rotate  z=e^(iθ)  since we′re only interested in ∣z∣=1.  This leads to  ∣((5+4z)/(4+5z))∣=((∣5+4cos θ +4i sin θ∣)/(∣4+5cos θ +5i sin θ∣))=  =((√(41+40cos θ))/( (√(41+40cos θ))))=1
nowIthinkwecaneasilycalculatethiswithw=1.Wererotatingthecoordinatesystemby±120°.Wedonthavetorotatez=eiθsincewereonlyinterestedinz∣=1.Thisleadsto5+4z4+5z∣=5+4cosθ+4isinθ4+5cosθ+5isinθ==41+40cosθ41+40cosθ=1
Answered by Frix last updated on 13/Nov/23
p=re^(iα) ∧q=se^(iβ)   ∣(p/q)∣=∣(r/s)e^(i(α−β)) ∣=(r/s)=((∣re^(iα) ∣)/(∣se^(iβ) ∣))=((∣p∣)/(∣q∣))    w=−(1/2)±((√3)/2)i=−(1/2)+(((√3)σ)/2)i; σ=±1⇒σ^2 =1  z=cos θ +i sin θ =c+si ⇒ c^2 +s^2 =1    2+3w+4zw^2 =  =−2c+2(√3)σs+(1/2)−(2(√3)σc+2s−((3(√3)σ)/3))i  ∣2+3w+4zw^2 ∣=(√(23−4(5c+(√3)σs)))    4w+3w^2 z+2z=  =(c/2)+((3(√3)σs)/2)−2−(((3(√3)σc)/2)−(s/2)−2(√3)σ)i  ∣4w+3w^2 z+2z∣=(√(23−4(5c+(√3)σs)))  ⇒  Answer is 1
p=reiαq=seiβpq∣=∣rsei(αβ)∣=rs=reiαseiβ=pqw=12±32i=12+3σ2i;σ=±1σ2=1z=cosθ+isinθ=c+sic2+s2=12+3w+4zw2==2c+23σs+12(23σc+2s33σ3)i2+3w+4zw2∣=234(5c+3σs)4w+3w2z+2z==c2+33σs22(33σc2s223σ)i4w+3w2z+2z∣=234(5c+3σs)Answeris1

Leave a Reply

Your email address will not be published. Required fields are marked *