Menu Close

Question-200120




Question Number 200120 by Mingma last updated on 14/Nov/23
Answered by ajfour last updated on 14/Nov/23
Commented by ajfour last updated on 14/Nov/23
(s/(t+p))=(t/(s+q))=(q/p)    (similarity of △s)  ⇒  ((s+t)/(s+t+p+q))=(q/p)    ..(i)  such perimeters equal ⇒  q+p+p+q=s+t+q  ⇒  s+t=2p+q  subdtituting in (i)  ((2p+q)/(3p+2q))=(q/p)  say  (p/q)=((AB)/(CD))=λ  ⇒  ((2λ+1)/(3λ+2))=(1/λ)  2λ^2 −2λ−2=0  λ^2 −λ−1=0  λ=((1+(√5))/2) = ϕ
$$\frac{{s}}{{t}+{p}}=\frac{{t}}{{s}+{q}}=\frac{{q}}{{p}}\:\:\:\:\left({similarity}\:{of}\:\bigtriangleup{s}\right) \\ $$$$\Rightarrow\:\:\frac{{s}+{t}}{{s}+{t}+{p}+{q}}=\frac{{q}}{{p}}\:\:\:\:..\left({i}\right) \\ $$$${such}\:{perimeters}\:{equal}\:\Rightarrow \\ $$$${q}+{p}+{p}+\cancel{{q}}={s}+{t}+\cancel{{q}} \\ $$$$\Rightarrow\:\:{s}+{t}=\mathrm{2}{p}+{q} \\ $$$${subdtituting}\:{in}\:\left({i}\right) \\ $$$$\frac{\mathrm{2}{p}+{q}}{\mathrm{3}{p}+\mathrm{2}{q}}=\frac{{q}}{{p}} \\ $$$${say}\:\:\frac{{p}}{{q}}=\frac{{AB}}{{CD}}=\lambda \\ $$$$\Rightarrow\:\:\frac{\mathrm{2}\lambda+\mathrm{1}}{\mathrm{3}\lambda+\mathrm{2}}=\frac{\mathrm{1}}{\lambda} \\ $$$$\mathrm{2}\lambda^{\mathrm{2}} −\mathrm{2}\lambda−\mathrm{2}=\mathrm{0} \\ $$$$\lambda^{\mathrm{2}} −\lambda−\mathrm{1}=\mathrm{0} \\ $$$$\lambda=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:=\:\varphi \\ $$
Commented by Mingma last updated on 14/Nov/23
Very elegant, sir!

Leave a Reply

Your email address will not be published. Required fields are marked *