Menu Close

solve-by-contour-integrstion-0-2pi-dx-1-acosx-




Question Number 200130 by universe last updated on 14/Nov/23
  solve by contour integrstion    ∫_0 ^(2π) (dx/(1+acosx))
solvebycontourintegrstion02πdx1+acosx
Answered by Mathspace last updated on 14/Nov/23
I=∫_0 ^(2π) (dx/(1+a((e^(ix) +e^(−ix) )/2)))  (e^(ix) =z)  =∫_(∣z∣=1)   (dz/(iz(1+a((z+z^(−1) )/2))))  =∫_(∣z∣=1)   ((−2idz)/(z(2+az+az^(−1) )))  =∫_(∣z∣=1)   ((−2idz)/(2z+az^2 +a))  =∫_(∣z∣=1)   ((−2idz)/(az^2 +2z+a))  f(z)=((−2i)/(az^2 +2z+a))  poles?  Δ^′ =1−a^2   case 1  ∣a∣<1 ⇒z_1 =((−1+(√(1−a^2 )))/a)  z_2 =((−1−(√(1−a^2 )))/a)   (a≠0)  ∣z_1 ∣−1=((1−(√(1−a^2 )))/(∣a∣))−1  =((1−(√(1−a^2 ))−∣a∣)/(∣a∣))=((1−∣a∣−(√(1−a^2 )))/(∣a∣))  (1−∣a∣)^2 −(1−a^2 )  =1−2∣a∣+a^2 −1+a^2   =2a^2 −2∣a∣=2∣a∣(∣a∣−1)<0  ⇒∣z_1 ∣<1  ∣z_2 ∣−1=((1+(√(1−a^2 )))/(∣a∣))−1  =((1−∣a∣+(√(1−a^2 )))/(∣a∣))>0 ⇒∣z_2 ∣>1  f(z)=((−2i)/(a(z−z_1 )(z−z_2 )))  ∫_(∣z∣=1) f(z)dz=2iπRes(f,z_1 )  =2iπ.((−2i)/(a(z_1 −z_2 )))=((4π)/(a(2((√(1−a^2 ))/a))))  =((2π)/( (√(1−a^2 )))) ⇒  I=((2π)/( (√(1−a^2 ))))  rest the case ⇒∣a∣>1  z_1 =((−1+i(√(a^2 −1)))/a)  and z_2 =((−1−i(√(a^2 −1)))/a)  ....follow the same path...
I=02πdx1+aeix+eix2(eix=z)=z∣=1dziz(1+az+z12)=z∣=12idzz(2+az+az1)=z∣=12idz2z+az2+a=z∣=12idzaz2+2z+af(z)=2iaz2+2z+apoles?Δ=1a2case1a∣<1z1=1+1a2az2=11a2a(a0)z11=11a2a1=11a2aa=1a1a2a(1a)2(1a2)=12a+a21+a2=2a22a∣=2a(a1)<0⇒∣z1∣<1z21=1+1a2a1=1a+1a2a>0⇒∣z2∣>1f(z)=2ia(zz1)(zz2)z∣=1f(z)dz=2iπRes(f,z1)=2iπ.2ia(z1z2)=4πa(21a2a)=2π1a2I=2π1a2restthecase⇒∣a∣>1z1=1+ia21aandz2=1ia21a.followthesamepath
Answered by MM42 last updated on 15/Nov/23
I=∫ (dx/(1+acosx))  if a=0⇒I=x+c  if a=1⇒I=(1/2)∫ (1+tan^2 (x/2))dx⇒I= tan(x/2)+c  if a=−1⇒I=(1/2)∫ (1+cotan^2 (x/2))dx⇒I= −cotan(x/2)+c  otherwise  ⇒let  tan(x/2)=u⇒∫ ((2du)/((1+a)+(1−a)u^2 ))=(2/(1−a))∫ (du/(((1+a)/(1−a))+u^2 ))    let   ((1+a)/(1−a))=k ⇒I=(2/(1−a)) ∫  (du/(u^2 +k))  if  ∣a∣<1 ⇒k>0⇒ I=(2/(1−a)) ×(1/( (√k)))×tan^(−1) ((u/( (√k))))+c  =(2/( (√(1−a^2 ))))×tan^(−1) ((√((1−a)/(1+a))) tan((x/2)×(√((1−a)/(1+a)))))+c    if  ∣a∣>1 ⇒k<0⇒ I=(1/(1−a)) ×(1/( k))×ln(((u−k)/(u+k)))+c  =(1/( (√(1−a^2 ))))×ln((((1−a)tan(x/2)−(√(1+a)))/((1−a)tan(x/2)+(√(1+a)))))+c
I=dx1+acosxifa=0I=x+cifa=1I=12(1+tan2x2)dxI=tanx2+cifa=1I=12(1+cotan2x2)dxI=cotanx2+cotherwiselettanx2=u2du(1+a)+(1a)u2=21adu1+a1a+u2let1+a1a=kI=21aduu2+kifa∣<1k>0I=21a×1k×tan1(uk)+c=21a2×tan1(1a1+atan(x2×1a1+a))+cifa∣>1k<0I=11a×1k×ln(uku+k)+c=11a2×ln((1a)tanx21+a(1a)tanx2+1+a)+c

Leave a Reply

Your email address will not be published. Required fields are marked *