solve-by-contour-integrstion-0-2pi-dx-1-acosx- Tinku Tara November 14, 2023 Integration 0 Comments FacebookTweetPin Question Number 200130 by universe last updated on 14/Nov/23 solvebycontourintegrstion∫02πdx1+acosx Answered by Mathspace last updated on 14/Nov/23 I=∫02πdx1+aeix+e−ix2(eix=z)=∫∣z∣=1dziz(1+az+z−12)=∫∣z∣=1−2idzz(2+az+az−1)=∫∣z∣=1−2idz2z+az2+a=∫∣z∣=1−2idzaz2+2z+af(z)=−2iaz2+2z+apoles?Δ′=1−a2case1∣a∣<1⇒z1=−1+1−a2az2=−1−1−a2a(a≠0)∣z1∣−1=1−1−a2∣a∣−1=1−1−a2−∣a∣∣a∣=1−∣a∣−1−a2∣a∣(1−∣a∣)2−(1−a2)=1−2∣a∣+a2−1+a2=2a2−2∣a∣=2∣a∣(∣a∣−1)<0⇒∣z1∣<1∣z2∣−1=1+1−a2∣a∣−1=1−∣a∣+1−a2∣a∣>0⇒∣z2∣>1f(z)=−2ia(z−z1)(z−z2)∫∣z∣=1f(z)dz=2iπRes(f,z1)=2iπ.−2ia(z1−z2)=4πa(21−a2a)=2π1−a2⇒I=2π1−a2restthecase⇒∣a∣>1z1=−1+ia2−1aandz2=−1−ia2−1a….followthesamepath… Answered by MM42 last updated on 15/Nov/23 I=∫dx1+acosxifa=0⇒I=x+cifa=1⇒I=12∫(1+tan2x2)dx⇒I=tanx2+cifa=−1⇒I=12∫(1+cotan2x2)dx⇒I=−cotanx2+cotherwise⇒lettanx2=u⇒∫2du(1+a)+(1−a)u2=21−a∫du1+a1−a+u2let1+a1−a=k⇒I=21−a∫duu2+kif∣a∣<1⇒k>0⇒I=21−a×1k×tan−1(uk)+c=21−a2×tan−1(1−a1+atan(x2×1−a1+a))+cif∣a∣>1⇒k<0⇒I=11−a×1k×ln(u−ku+k)+c=11−a2×ln((1−a)tanx2−1+a(1−a)tanx2+1+a)+c Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-200092Next Next post: Question-200129 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.