Menu Close

Given-f-R-R-is-a-quadratic-polynomial-f-1-1-f-2-1-2-and-f-3-1-3-Find-f-4-




Question Number 200167 by hardmath last updated on 15/Nov/23
Given   f:R→R  is a quadratic polynomial  f(1) = 1 , f(2) = (1/2)  and  f(3) = (1/3)  Find:  f(4) = ?
Givenf:RRisaquadraticpolynomialf(1)=1,f(2)=12andf(3)=13Find:f(4)=?
Answered by witcher3 last updated on 15/Nov/23
⇔f(1)−1=2f(2)−1=3f(3)−1=0  let xf(x)−1=g(x)⇒deg(g)=3  g(1)=g(2)=g(3)=0  ⇒g(x)=a(x−1)(x−2)(x−3)  xf(x)=1+g(x)  ⇒1+g(0)=0⇒−6a+1=0  a=(1/6)  f(x)=(1/x)((1/6)(x−3)(x−2)(x−1)+1)  =g′(x)=(x^2 /6)−x+((11)/6)=f(x)
f(1)1=2f(2)1=3f(3)1=0letxf(x)1=g(x)deg(g)=3g(1)=g(2)=g(3)=0g(x)=a(x1)(x2)(x3)xf(x)=1+g(x)1+g(0)=06a+1=0a=16f(x)=1x(16(x3)(x2)(x1)+1)=g(x)=x26x+116=f(x)
Answered by Rasheed.Sindhi last updated on 15/Nov/23
let f(x)=ax^2 +bx+c        f(1)=a+b+c=1       f(2)=4a+2b+c=(1/2)        f(3)=9a+3b+c=(1/3)  f(2)−f(1)=3a+b=−(1/2)  3(f(2)−f(1))=9a+3b=−(3/2)  f(3)−3(f(2)−f(1))=c=(1/3)−(−(3/2))=((11)/6)  f(1)⇒a+b=1−((11)/6)=−(5/6)                2a+2b=−(5/3)..................(i)  f(2)⇒4a+2b=(1/2)−((11)/6)=−(4/3)......(ii)  (ii)−(ii):   2a=−(4/3)−(−(5/3))=(1/3)                            a=(1/6)  f(1):   (1/6)+b+((11)/6)=1⇒b=1−2=−1  f(4)=16a+4b+c=16((1/6))+4(−1)+((11)/6)            =((16−24+11)/6)=(3/6)=(1/2) ✓
letf(x)=ax2+bx+cf(1)=a+b+c=1f(2)=4a+2b+c=12f(3)=9a+3b+c=13f(2)f(1)=3a+b=123(f(2)f(1))=9a+3b=32f(3)3(f(2)f(1))=c=13(32)=116f(1)a+b=1116=562a+2b=53(i)f(2)4a+2b=12116=43(ii)(ii)(ii):2a=43(53)=13a=16f(1):16+b+116=1b=12=1f(4)=16a+4b+c=16(16)+4(1)+116=1624+116=36=12
Answered by Rasheed.Sindhi last updated on 15/Nov/23
letf(x)= ax^2 +bx+c   determinant (((1)),a,b,c),( , ,a,(a+b)),( ,a,(a+b),(f(1)=a+b+c=1)))   a=1−b−c   determinant (((2)),(1−b−c),b,c),( , ,(2−2b−2c),(4−2b−4c)),( ,(1−b−c),(2−b−2c),(f(2)=4−2b−3c=(1/2))))   −4+2b+3c=−(1/2)⇒b=((7/2)−3c)/2=(7/4)−(3/2)c  a=1−b−c=1−((7/4)−(3/2)c)−c=−(3/4)+(c/2)   determinant (((3)),(−(3/4)+(c/2)),((7/4)−(3/2)c),c),( , ,(−(9/4)+((3c)/2)),(−(3/2))),( ,(−(3/4)+(c/2)),(−(1/2)),(f(3)=−(3/2)+c=(1/3))))      c=(1/3)+(3/2)=((11)/6)  a=−(3/4)+(c/2)=−(3/4)+(1/2)∙((11)/6)=((−9+11)/(12))=(2/(12))=(1/6)  b=(7/4)−(3/2)c=(7/4)−(3/2)(((11)/6))=((7−11)/4)=−1    f(x)=(1/6)x^2 −x+((11)/6)  f(4)=?   determinant (((4)),(1/6),(−1),((11)/6)),( , ,(2/3),(−(4/3))),( ,(1/6),(−(1/3)),(f(4)=(1/2))))
letf(x)=ax2+bx+c1)abcaa+baa+bf(1)=a+b+c=1a=1bc2)1bcbc22b2c42b4c1bc2b2cf(2)=42b3c=124+2b+3c=12b=(723c)/2=7432ca=1bc=1(7432c)c=34+c23)34+c27432cc94+3c23234+c212f(3)=32+c=13c=13+32=116a=34+c2=34+12116=9+1112=212=16b=7432c=7432(116)=7114=1f(x)=16x2x+116f(4)=?4)16111623431613f(4)=12

Leave a Reply

Your email address will not be published. Required fields are marked *