Menu Close

If-f-x-2-x-86-and-g-x-3x-2-x-4-Then-find-g-f-1-g-14-




Question Number 200168 by hardmath last updated on 15/Nov/23
If  f(x) = 2^x  + 86  and  g(x) = 3x^2  + x − 4  Then find:  g[f^(−1) (g(14))] = ?
Iff(x)=2x+86andg(x)=3x2+x4Thenfind:g[f1(g(14))]=?
Commented by jazeee last updated on 15/Nov/23
  Solution:  We need to find f^(−1) (x) first.  y = 2^x  + 86  x = 2^x  + 86  x − 86 = 2^y   ln (x − 86) = y ∗ ln (2)  ((ln (x − 86))/(ln (2))) = y  f^(−1)  (x) = ((ln (x −86))/(ln(2)))    Now, substitute 14 in g(x).  g(14) = 3(14)^2  + (14) − 4  g(14) = 3(196) + 10  g(14) = 588 + 10  g(14) = 598    Next is to substitute 598 in f^(−1)  (x).  f^(−1)  (598) = ((ln (598 −86))/(ln (2)))  f^(−1)  (598) = ((ln (512))/(ln (2)))  note: 512 = 2^9   f^(−1)  (598) = ((9 ln(2))/(ln (2)))  f^(−1)  (598) = 9    Lastly, substitute 9 in g(x).  g(9) = 3(9)^2  + (9) − 4  g(9) = 3(81) + 5  g(9) = 243 + 5  g(9) = 248    Answer: 248.
Solution:Weneedtofindf1(x)first.y=2x+86x=2x+86x86=2yln(x86)=yln(2)ln(x86)ln(2)=yf1(x)=ln(x86)ln(2)Now,substitute14ing(x).g(14)=3(14)2+(14)4g(14)=3(196)+10g(14)=588+10g(14)=598Nextistosubstitute598inf1(x).f1(598)=ln(59886)ln(2)f1(598)=ln(512)ln(2)note:512=29f1(598)=9ln(2)ln(2)f1(598)=9Lastly,substitute9ing(x).g(9)=3(9)2+(9)4g(9)=3(81)+5g(9)=243+5g(9)=248Answer:248.
Commented by jazeee last updated on 15/Nov/23
  ∗ x = 2^y  + 86 ∗ (second step)
x=2y+86(secondstep)
Answered by Sutrisno last updated on 15/Nov/23
g(14)=3(14)^2 +14−4=598  f(x)=2^x +86→x=f^(−1) (2^x +86)  2^x +86=598  2^x =512→x=9  g(9)=3(9)^2 +9−4=248  ∴g(f^(−1) (g(14)))=248
g(14)=3(14)2+144=598f(x)=2x+86x=f1(2x+86)2x+86=5982x=512x=9g(9)=3(9)2+94=248g(f1(g(14)))=248

Leave a Reply

Your email address will not be published. Required fields are marked *