Menu Close

Question-200224




Question Number 200224 by cortano12 last updated on 15/Nov/23
Answered by Rasheed.Sindhi last updated on 16/Nov/23
 { ((yx^(log_y x ) =x^(5/2) ...............(i))),((log_4 y.log_y (y−3x)=1...(ii)  )) :}  (ii)⇒ (1/(log_y 4 ))=(1/(log_y (y−3x) ))              y−3x=4  y=x^a   (say)  log_y y=alog_y x  a=(1/(log_y x))   y=x^(1/(log_y x))   (i)⇒x^(1/(log_y x)) ∙x^(log_y x ) =x^(5/2)              x^(log_y x +(1/(log_y x))) =x^(5/2)         log_y x +(1/(log_y x))=(5/2)        2(log_y x)^2 −5log_y x +2=0       (2log_y x−1)(log_y x−2)=0         log_y x=(1/2),2  ∧  y=3x+4            y^2 =x ∣ y^(1/2) =x       (3x+4)^2 =x ∣ (3x+4)^(1/2) =x       9x^2 +23x+16=0_(No real roots)  ∣ 3x+4=x^2       x^2 −3x−4=0  (x−4)(x+1)=0  x=4 ,x=−1  y=3(4)+4=16,3(−1)+4=1  y=16,1  (x,y)=(4,16),(−1,1)^(invalid)
{yxlogyx=x52(i)log4y.logy(y3x)=1(ii)(ii)1logy4=1logy(y3x)y3x=4y=xa(say)logyy=alogyxa=1logyxy=x1logyx(i)x1logyxxlogyx=x52xlogyx+1logyx=x52logyx+1logyx=522(logyx)25logyx+2=0(2logyx1)(logyx2)=0logyx=12,2y=3x+4y2=xy1/2=x(3x+4)2=x(3x+4)1/2=x9x2+23x+16=0Norealroots3x+4=x2x23x4=0(x4)(x+1)=0x=4,x=1y=3(4)+4=16,3(1)+4=1y=16,1(x,y)=(4,16),(1,1)invalid
Answered by Frix last updated on 16/Nov/23
With x, y >0...  ...the 1^(st)  equation is equal to  (ln x −2ln y)(2ln x −ln y)=0  ⇒ y=(√x)∨y=x^2   ...the 2^(nd)  equation is equal to  3x−y+4=0 ⇒ y=3x+4  (1) (√x)=3x+4 ⇒ x∉R  (2) x^2 =3x+4 ⇒ x=4∧y=16
Withx,y>0the1stequationisequalto(lnx2lny)(2lnxlny)=0y=xy=x2the2ndequationisequalto3xy+4=0y=3x+4(1)x=3x+4xR(2)x2=3x+4x=4y=16
Answered by Rasheed.Sindhi last updated on 16/Nov/23
 { ((y x^(log_y x ) =x^(5/2) .................(i))),((log_4 y.log_y (y−3x)=1....(ii)  )) :}  (i)⇒y=x^((5/2)−log_y x ) ⇒y^2 =x^(5−2log_y x )   ⇒log_y y^2 =(5−2log_y x)log_y x  2=5log_y x−2(log_y x)^2      2(log_y x)^2 −5log_y x+2=0  log_y x=((5±(√(25−16)))/4)=2,(1/2)  y^2 =x ∣ y^(1/2) =x⇒y=x^2 .........(iii)  (ii)⇒(1/(log_y 4 ))=(1/(log_y (y−3x) ))           ⇒y−3x=4            ⇒y=3x+4...................(iv)     (iii) & (iv) :    (3x+4)^2 =x  ∣  3x+4=x^2                      9x^2 +23x+16=0_(No real roots)   ∣  x^2 −3x−4=0  (x−4)(x+1)=0⇒x=4,−1        ⇒y=3(4)+4 , 3(−1)+4=16,1 but y≠1  ∴ (x,y)=(16,4) ✓
{yxlogyx=x52..(i)log4y.logy(y3x)=1.(ii)(i)y=x52logyxy2=x52logyxlogyy2=(52logyx)logyx2=5logyx2(logyx)22(logyx)25logyx+2=0logyx=5±25164=2,12y2=xy1/2=xy=x2(iii)(ii)1logy4=1logy(y3x)y3x=4y=3x+4.(iv)(iii)&(iv):(3x+4)2=x3x+4=x29x2+23x+16=0Norealrootsx23x4=0(x4)(x+1)=0x=4,1y=3(4)+4,3(1)+4=16,1buty1(x,y)=(16,4)

Leave a Reply

Your email address will not be published. Required fields are marked *