Question Number 200265 by cherokeesay last updated on 16/Nov/23
Answered by witcher3 last updated on 16/Nov/23
$$\begin{cases}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}\right)^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} −\mathrm{2}.\mathrm{5}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}\right)=\mathrm{0}}\\{\left(\mathrm{2}\right)\Leftrightarrow\left(\mathrm{2}\right)}\end{cases} \\ $$$$\Leftrightarrow\begin{cases}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{0}}\\{\sqrt{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{3}\right)^{\mathrm{2}} +\mathrm{4}}−\sqrt{\mathrm{2x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{6}}=\mathrm{0}}\end{cases} \\ $$$$\Leftrightarrow\begin{cases}{\mathrm{y}=\mathrm{x}^{\mathrm{2}} −\mathrm{5}}\\{\left(\mathrm{x}^{\mathrm{4}} −\mathrm{6x}^{\mathrm{2}} +\mathrm{13}\right)=\mathrm{2x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{6}}\end{cases} \\ $$$$\mathrm{x}^{\mathrm{4}} −\mathrm{8x}^{\mathrm{2}} +\mathrm{19}−\left(\mathrm{x}^{\mathrm{4}} −\mathrm{10x}^{\mathrm{2}} +\mathrm{25}\right)=\mathrm{0} \\ $$$$\mathrm{2x}^{\mathrm{2}} −\mathrm{6}=\mathrm{0} \\ $$$$\mathrm{x}=\sqrt{\mathrm{3}} \\ $$$$\mathrm{x}=−\sqrt{\mathrm{3}} \\ $$$$\mathrm{y}=−\mathrm{2} \\ $$$$\mathrm{S}=\left\{\left(\sqrt{\mathrm{3}},−\mathrm{2}\right);\left(−\sqrt{\mathrm{3}},−\mathrm{2}\right)\right\} \\ $$$$ \\ $$