Question Number 200275 by sonukgindia last updated on 16/Nov/23
Answered by Mathspace last updated on 16/Nov/23
$${I}=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{{a}^{\mathrm{2}} −\mathrm{2}{acosx}+\mathrm{1}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{{dx}}{{a}^{\mathrm{2}} −\mathrm{2}{a}\frac{{e}^{{ix}} +{e}^{−{ix}} }{\mathrm{2}}+\mathrm{1}}\left({z}={e}^{{ix}} \right) \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \:\:\frac{{dz}}{{iz}\left({a}^{\mathrm{2}} −{a}\left({z}+{z}^{−\mathrm{1}} \right)+\mathrm{1}\right)} \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \:\frac{−{idz}}{{a}^{\mathrm{2}} {z}−{az}^{\mathrm{2}} −{a}+{z}} \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \:\:\frac{−{idz}}{−{az}^{\mathrm{2}} +\left({a}^{\mathrm{2}} +\mathrm{1}\right){z}−{a}} \\ $$$$=\int_{\mid{z}\mid=\mathrm{1}} \frac{{idz}}{{az}^{\mathrm{2}} −\left({a}^{\mathrm{2}} +\mathrm{1}\right){z}+{a}} \\ $$$${let}\:{f}\left({z}\right)=\frac{{i}}{{az}^{\mathrm{2}} −\left({a}^{\mathrm{2}} +\mathrm{1}\right){z}+{a}} \\ $$$${poles}\:{of}\:{f}? \\ $$$$\Delta=\left({a}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{a}^{\mathrm{2}} \\ $$$$={a}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1}−\mathrm{4}{a}^{\mathrm{2}} ={a}^{\mathrm{4}} −\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1} \\ $$$$=\left({a}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \:{and}\:\sqrt{\Delta}=\mid{a}^{\mathrm{2}} −\mathrm{1}\mid \\ $$$$=\mathrm{1}−{a}^{\mathrm{2}} \:{duo}\:{to}\:{o}<{a}<\mathrm{1} \\ $$$$\Rightarrow{z}_{\mathrm{1}} =\frac{{a}^{\mathrm{2}} +\mathrm{1}+\mathrm{1}−{a}^{\mathrm{2}} }{\mathrm{2}{a}}=\frac{\mathrm{1}}{{a}} \\ $$$${o}<{a}<\mathrm{1}\:\Rightarrow\frac{\mathrm{1}}{{a}}>\mathrm{1}\:\Rightarrow\mid{z}_{\mathrm{1}} \mid>\mathrm{1} \\ $$$${z}_{\mathrm{2}} =\frac{{a}^{\mathrm{2}} +\mathrm{1}−\mathrm{1}+{a}^{\mathrm{2}} }{\mathrm{2}{a}}={a}\:{and} \\ $$$$\mid{z}_{\mathrm{2}} \mid={a}<\mathrm{1}\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{\mid{z}\mid} {f}\left({z}\right){dz}=\mathrm{2}{i}\pi{Res}\left({f},{z}_{\mathrm{2}} \right) \\ $$$${we}\:{have}\:{f}\left({z}\right)=\frac{{i}}{{a}\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)} \\ $$$$\Rightarrow{Res}\left({f},{z}_{\mathrm{2}} \right)=\frac{{i}}{{a}\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)} \\ $$$$=\frac{{i}}{{a}.\left({a}−\frac{\mathrm{1}}{{a}}\right)}=\frac{{i}}{{a}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\Rightarrow\int_{\mid{z}\mid=\mathrm{1}} {f}\left({z}\right){dz}=\mathrm{2}{i}\pi×\frac{{i}}{{a}^{\mathrm{2}} −\mathrm{1}} \\ $$$$=\frac{−\mathrm{2}\pi}{{a}^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{2}\pi}{\mathrm{1}−{a}^{\mathrm{2}} }\:{and}\:{finally} \\ $$$$\bigstar{I}=\frac{\mathrm{2}\pi}{\mathrm{1}−{a}^{\mathrm{2}} }\bigstar \\ $$$$ \\ $$