Question Number 200330 by hardmath last updated on 17/Nov/23
$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:=\:\sqrt{\mathrm{6}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{9}^{\boldsymbol{\mathrm{x}}} } \\ $$$$\mathrm{find}:\:\:\:\mathrm{x}\:=\:? \\ $$
Answered by Rasheed.Sindhi last updated on 17/Nov/23
$$\left(\mathrm{2}^{{x}} −\mathrm{3}^{{x}} \right)^{\mathrm{2}} =\mathrm{6}^{{x}} −\mathrm{9}^{{x}} \\ $$$$\mathrm{2}^{\mathrm{2}{x}} −\mathrm{2}\left(\mathrm{2}^{{x}} \right)\left(\mathrm{3}^{{x}} \right)+\mathrm{3}^{\mathrm{2}{x}} =\mathrm{6}^{{x}} −\mathrm{9}^{{x}} \\ $$$$\mathrm{4}^{{x}} −\mathrm{2}\left(\mathrm{6}^{{x}} \right)+\mathrm{9}^{{x}} =\mathrm{6}^{{x}} −\mathrm{9}^{{x}} \\ $$$$\mathrm{4}^{{x}} +\mathrm{2}\left(\mathrm{9}^{{x}} \right)=\mathrm{3}\left(\mathrm{6}^{{x}} \right) \\ $$$$\left(\frac{\mathrm{4}}{\mathrm{6}}\right)^{{x}} +\mathrm{2}\left(\frac{\mathrm{9}}{\mathrm{6}}\right)^{{x}} =\mathrm{3} \\ $$$$\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} +\mathrm{2}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{x}} =\mathrm{3} \\ $$$${let}\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} ={a} \\ $$$${a}+\frac{\mathrm{2}}{{a}}=\mathrm{3} \\ $$$${a}^{\mathrm{2}} −\mathrm{3}{a}+\mathrm{2}=\mathrm{0} \\ $$$$\left({a}−\mathrm{1}\right)\left({a}−\mathrm{2}\right)=\mathrm{0} \\ $$$${a}=\mathrm{1},\mathrm{2} \\ $$$$\bullet\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} =\mathrm{1}=\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{0}} \Rightarrow{x}=\mathrm{0}\checkmark \\ $$$$\bullet\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} =\mathrm{2} \\ $$$$\:\:\:{x}\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)=\mathrm{log}_{\mathrm{2}} \mathrm{2}=\mathrm{1} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{2}} \mathrm{2}\:−\mathrm{log}_{\mathrm{2}} \mathrm{3}\:}\:=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{log}_{\mathrm{2}} \mathrm{3}\:}\checkmark \\ $$
Commented by Rasheed.Sindhi last updated on 18/Nov/23
$${I}\:{always}\:{remember}\:{an}\:{old}\:{forum} \\ $$$${member}\:'{dinusar}','{hongking}';\: \\ $$$$\:{when}\:{I}\:{see}\:{your}\:{posts} \\ $$
Commented by hardmath last updated on 18/Nov/23
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$
Answered by Rasheed.Sindhi last updated on 17/Nov/23
$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:=\:\sqrt{\mathrm{6}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{9}^{\boldsymbol{\mathrm{x}}} } \\ $$$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:=\mathrm{3}^{\frac{\mathrm{x}}{\mathrm{2}}} \:\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} } \\ $$$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:=\mathrm{3}^{\frac{\mathrm{x}}{\mathrm{2}}} \:\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} } \\ $$$$\left(\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} }\:\right)^{\mathrm{2}} −\mathrm{3}^{\frac{\mathrm{x}}{\mathrm{2}}} \:\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} } \\ $$$$\:\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} }\:\left(\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} }\:−\mathrm{3}^{{x}/\mathrm{2}} \right)=\mathrm{0} \\ $$$$\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} }\:=\mathrm{0}\:\vee\:\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} }\:=\mathrm{3}^{{x}/\mathrm{2}} \\ $$$$\blacktriangleright\mathrm{2}^{{x}} =\mathrm{3}^{{x}} \Rightarrow\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} =\mathrm{1}=\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{0}} \Rightarrow{x}=\mathrm{0} \\ $$$$\blacktriangleright\sqrt{\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} }\:=\mathrm{3}^{\mathrm{x}/\mathrm{2}} \\ $$$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:=\mathrm{3}^{\mathrm{x}} \\ $$$$\mathrm{2}^{\mathrm{x}} =\mathrm{2}\centerdot\mathrm{3}^{\mathrm{x}} \\ $$$$\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{x}} =\mathrm{2} \\ $$$$\mathrm{log}_{\mathrm{2}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{x}} =\mathrm{log}_{\mathrm{2}} \mathrm{2} \\ $$$$\mathrm{xlog}_{\mathrm{2}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)=\mathrm{1} \\ $$$$\mathrm{x}=\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{2}} \mathrm{2}−\mathrm{log}_{\mathrm{2}} \mathrm{3}\:\:}=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{log}_{\mathrm{2}} \mathrm{3}} \\ $$
Answered by witcher3 last updated on 17/Nov/23
$$\sqrt{\mathrm{1}\left(\mathrm{1}−\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{x}} \right.}=\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\frac{\mathrm{x}}{\mathrm{2}}} −\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{x}}{\mathrm{2}}} \\ $$$$\sqrt{\mathrm{1}−\mathrm{a}^{\mathrm{2}} }=\left(\frac{\mathrm{1}}{\mathrm{a}}\right)−\mathrm{a} \\ $$$$\mathrm{a}=\mathrm{1};\mathrm{x}=>\mathrm{p0}\:;\mathrm{or}\:\mathrm{a}=\sqrt{\mathrm{1}−\mathrm{a}^{\mathrm{2}} } \\ $$$$\Leftrightarrow\mathrm{a}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\Rightarrow\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{x}}{\mathrm{2}}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\Leftrightarrow\mathrm{x}=\mathrm{2}\frac{\mathrm{ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)}{\mathrm{ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$
Answered by manxsol last updated on 18/Nov/23
$$ \\ $$