Menu Close

for-x-y-z-N-if-38x-40y-41z-520-find-x-y-z-




Question Number 200321 by mr W last updated on 17/Nov/23
for x,y,z ∈N, if  38x+40y+41z=520  find x+y+z=?
$${for}\:{x},{y},{z}\:\in{N},\:{if} \\ $$$$\mathrm{38}{x}+\mathrm{40}{y}+\mathrm{41}{z}=\mathrm{520} \\ $$$${find}\:{x}+{y}+{z}=? \\ $$
Answered by Rasheed.Sindhi last updated on 17/Nov/23
520−38x−40y=41z  ⇒41∣ (520−38x−40y)  ⇒520−38x−40y≡0(mod 41)        28+3x+y≡0(mod 41)        3x+y≡−28(mod 41)        3x+y≡13(mod 41)          ∧ z=((520−38x−40y)/(41)) ∧ 38x+40y≤520_(⇒19x+20y≤260)    (x,y)_(z) =_(=) (1,10)_(2) ,_(,) (2,7)_(4) ,_(,) (3,4)_(6) ,_(,) (4,1)_(8) ,(5,−2)_(10) ^(×) ,...         x+y+z=13✓
$$\mathrm{520}−\mathrm{38}{x}−\mathrm{40}{y}=\mathrm{41}{z} \\ $$$$\Rightarrow\mathrm{41}\mid\:\left(\mathrm{520}−\mathrm{38}{x}−\mathrm{40}{y}\right) \\ $$$$\Rightarrow\mathrm{520}−\mathrm{38}{x}−\mathrm{40}{y}\equiv\mathrm{0}\left({mod}\:\mathrm{41}\right) \\ $$$$\:\:\:\:\:\:\mathrm{28}+\mathrm{3}{x}+{y}\equiv\mathrm{0}\left({mod}\:\mathrm{41}\right) \\ $$$$\:\:\:\:\:\:\mathrm{3}{x}+{y}\equiv−\mathrm{28}\left({mod}\:\mathrm{41}\right) \\ $$$$\:\:\:\:\:\:\mathrm{3}{x}+{y}\equiv\mathrm{13}\left({mod}\:\mathrm{41}\right) \\ $$$$\:\:\:\:\:\:\:\:\wedge\:{z}=\frac{\mathrm{520}−\mathrm{38}{x}−\mathrm{40}{y}}{\mathrm{41}}\:\wedge\:\underset{\Rightarrow\mathrm{19}{x}+\mathrm{20}{y}\leqslant\mathrm{260}} {\mathrm{38}{x}+\mathrm{40}{y}\leqslant\mathrm{520}}\: \\ $$$$\underset{{z}} {\left({x},{y}\right)}\underset{=} {=}\underset{\mathrm{2}} {\left(\mathrm{1},\mathrm{10}\right)}\underset{,} {,}\underset{\mathrm{4}} {\left(\mathrm{2},\mathrm{7}\right)}\underset{,} {,}\underset{\mathrm{6}} {\left(\mathrm{3},\mathrm{4}\right)}\underset{,} {,}\underset{\mathrm{8}} {\left(\mathrm{4},\mathrm{1}\right)},\underset{\mathrm{10}} {\overset{×} {\left(\mathrm{5},−\mathrm{2}\right)}},…\:\:\:\:\:\:\: \\ $$$${x}+{y}+{z}=\mathrm{13}\checkmark \\ $$
Answered by Rasheed.Sindhi last updated on 17/Nov/23
38x+40y+41z=520  40x+40y+40z−2x+z=520  40x+40y+40z=520+2x−z  x+y+z=((520+2x−z)/(40))=13+((2x−z)/(40))  Hence we′ve to determine 13+((2x−z)/(40))∈N        13+((2x−z)/(40))∈N⇒40 ∣ 2x−z  2x−z=40k⇒x=20k+(z/2)∈N⇒z is even  z=2k  13+((2x−z)/(40))=13+((2x−2k)/(40))=13+((x−k)/(20))  x−k=0,20,40,60,....  x+y+z=13+(0/(20))  x=k,20+k,40+k,...  z=2k,40+2k,80+2k,...  Continue  ....
$$\mathrm{38}{x}+\mathrm{40}{y}+\mathrm{41}{z}=\mathrm{520} \\ $$$$\mathrm{40}{x}+\mathrm{40}{y}+\mathrm{40}{z}−\mathrm{2}{x}+{z}=\mathrm{520} \\ $$$$\mathrm{40}{x}+\mathrm{40}{y}+\mathrm{40}{z}=\mathrm{520}+\mathrm{2}{x}−{z} \\ $$$${x}+{y}+{z}=\frac{\mathrm{520}+\mathrm{2}{x}−{z}}{\mathrm{40}}=\mathrm{13}+\frac{\mathrm{2}{x}−{z}}{\mathrm{40}} \\ $$$${Hence}\:{we}'{ve}\:{to}\:{determine}\:\mathrm{13}+\frac{\mathrm{2}{x}−{z}}{\mathrm{40}}\in\mathbb{N} \\ $$$$\:\:\:\:\:\:\mathrm{13}+\frac{\mathrm{2}{x}−{z}}{\mathrm{40}}\in\mathbb{N}\Rightarrow\mathrm{40}\:\mid\:\mathrm{2}{x}−{z} \\ $$$$\mathrm{2}{x}−{z}=\mathrm{40}{k}\Rightarrow{x}=\mathrm{20}{k}+\frac{{z}}{\mathrm{2}}\in\mathbb{N}\Rightarrow{z}\:{is}\:{even} \\ $$$${z}=\mathrm{2}{k} \\ $$$$\mathrm{13}+\frac{\mathrm{2}{x}−{z}}{\mathrm{40}}=\mathrm{13}+\frac{\mathrm{2}{x}−\mathrm{2}{k}}{\mathrm{40}}=\mathrm{13}+\frac{{x}−{k}}{\mathrm{20}} \\ $$$${x}−{k}=\mathrm{0},\mathrm{20},\mathrm{40},\mathrm{60},…. \\ $$$${x}+{y}+{z}=\mathrm{13}+\frac{\mathrm{0}}{\mathrm{20}} \\ $$$${x}={k},\mathrm{20}+{k},\mathrm{40}+{k},… \\ $$$${z}=\mathrm{2}{k},\mathrm{40}+\mathrm{2}{k},\mathrm{80}+\mathrm{2}{k},… \\ $$$${Continue} \\ $$$$…. \\ $$
Answered by ajfour last updated on 17/Nov/23
s=x+y+z  z<((520−78)/(41))   ⇒ z<11  x<((520−81)/(38))  ⇒ x<12  y<((520−79)/(40))  ⇒  y<12  38x+40y+41(s−x−y)=520  3x+y=41s−520≥4  ⇒  s>((524)/(41))    ⇒  s=13,14, ...  3x+y=41(s−13)+13  s=13+((3x+y−13)/(41))  4≤ 3x+y ≤36  ⇒  3x+y=13  s=13
$${s}={x}+{y}+{z} \\ $$$${z}<\frac{\mathrm{520}−\mathrm{78}}{\mathrm{41}}\:\:\:\Rightarrow\:{z}<\mathrm{11} \\ $$$${x}<\frac{\mathrm{520}−\mathrm{81}}{\mathrm{38}}\:\:\Rightarrow\:{x}<\mathrm{12} \\ $$$${y}<\frac{\mathrm{520}−\mathrm{79}}{\mathrm{40}}\:\:\Rightarrow\:\:{y}<\mathrm{12} \\ $$$$\mathrm{38}{x}+\mathrm{40}{y}+\mathrm{41}\left({s}−{x}−{y}\right)=\mathrm{520} \\ $$$$\mathrm{3}{x}+{y}=\mathrm{41}{s}−\mathrm{520}\geqslant\mathrm{4} \\ $$$$\Rightarrow\:\:{s}>\frac{\mathrm{524}}{\mathrm{41}}\:\:\:\:\Rightarrow\:\:{s}=\mathrm{13},\mathrm{14},\:… \\ $$$$\mathrm{3}{x}+{y}=\mathrm{41}\left({s}−\mathrm{13}\right)+\mathrm{13} \\ $$$${s}=\mathrm{13}+\frac{\mathrm{3}{x}+{y}−\mathrm{13}}{\mathrm{41}} \\ $$$$\mathrm{4}\leqslant\:\mathrm{3}{x}+{y}\:\leqslant\mathrm{36} \\ $$$$\Rightarrow\:\:\mathrm{3}{x}+{y}=\mathrm{13} \\ $$$${s}=\mathrm{13} \\ $$
Answered by mr W last updated on 17/Nov/23
alternative:  38x+40y+41z=520  38(x+y+z)=520−2y−3z<520  ⇒x+y+z<((520)/(38))=13((13)/(19))≤13    ...(i)    41(x+y+z)=520+3x+y>520  ⇒x+y+z>((520)/(41))=12((38)/(41))≥13   ...(ii)    ⇒x+y+z=13
$${alternative}: \\ $$$$\mathrm{38}{x}+\mathrm{40}{y}+\mathrm{41}{z}=\mathrm{520} \\ $$$$\mathrm{38}\left({x}+{y}+{z}\right)=\mathrm{520}−\mathrm{2}{y}−\mathrm{3}{z}<\mathrm{520} \\ $$$$\Rightarrow{x}+{y}+{z}<\frac{\mathrm{520}}{\mathrm{38}}=\mathrm{13}\frac{\mathrm{13}}{\mathrm{19}}\leqslant\mathrm{13}\:\:\:\:…\left({i}\right) \\ $$$$ \\ $$$$\mathrm{41}\left({x}+{y}+{z}\right)=\mathrm{520}+\mathrm{3}{x}+{y}>\mathrm{520} \\ $$$$\Rightarrow{x}+{y}+{z}>\frac{\mathrm{520}}{\mathrm{41}}=\mathrm{12}\frac{\mathrm{38}}{\mathrm{41}}\geqslant\mathrm{13}\:\:\:…\left({ii}\right) \\ $$$$ \\ $$$$\Rightarrow{x}+{y}+{z}=\mathrm{13} \\ $$
Answered by witcher3 last updated on 17/Nov/23
38x+40y+41z=520  ⇔z=0[2]⇔  z=2z′  ⇔19x+20y+41z′=260  19(x+y+2z′)+3z′+y=260  19(a)+3z′+y=260  3z′+y=b  19a≥12b  b≤((19a)/(12))  19a+b≤19a.(((13)/(12)))  ⇒a≥((12.260)/(19.13))  a≥((12.20)/(19))  a≥13  a=13⇒19.13+(3z′+y)=260  3z′+y=260−247=13  a=14  19.14+(3z′+y)=260⇒3z′+y=−6   ⇒a=13  x+y+z=13  3z′+y=13  ⇒x−z′=0⇒x=z′  2x=z
$$\mathrm{38x}+\mathrm{40y}+\mathrm{41z}=\mathrm{520} \\ $$$$\Leftrightarrow\mathrm{z}=\mathrm{0}\left[\mathrm{2}\right]\Leftrightarrow \\ $$$$\mathrm{z}=\mathrm{2z}' \\ $$$$\Leftrightarrow\mathrm{19x}+\mathrm{20y}+\mathrm{41z}'=\mathrm{260} \\ $$$$\mathrm{19}\left(\mathrm{x}+\mathrm{y}+\mathrm{2z}'\right)+\mathrm{3z}'+\mathrm{y}=\mathrm{260} \\ $$$$\mathrm{19}\left(\mathrm{a}\right)+\mathrm{3z}'+\mathrm{y}=\mathrm{260} \\ $$$$\mathrm{3z}'+\mathrm{y}=\mathrm{b} \\ $$$$\mathrm{19a}\geqslant\mathrm{12b} \\ $$$$\mathrm{b}\leqslant\frac{\mathrm{19a}}{\mathrm{12}} \\ $$$$\mathrm{19a}+\mathrm{b}\leqslant\mathrm{19a}.\left(\frac{\mathrm{13}}{\mathrm{12}}\right) \\ $$$$\Rightarrow\mathrm{a}\geqslant\frac{\mathrm{12}.\mathrm{260}}{\mathrm{19}.\mathrm{13}} \\ $$$$\mathrm{a}\geqslant\frac{\mathrm{12}.\mathrm{20}}{\mathrm{19}} \\ $$$$\mathrm{a}\geqslant\mathrm{13} \\ $$$$\mathrm{a}=\mathrm{13}\Rightarrow\mathrm{19}.\mathrm{13}+\left(\mathrm{3z}'+\mathrm{y}\right)=\mathrm{260} \\ $$$$\mathrm{3z}'+\mathrm{y}=\mathrm{260}−\mathrm{247}=\mathrm{13} \\ $$$$\mathrm{a}=\mathrm{14} \\ $$$$\mathrm{19}.\mathrm{14}+\left(\mathrm{3z}'+\mathrm{y}\right)=\mathrm{260}\Rightarrow\mathrm{3z}'+\mathrm{y}=−\mathrm{6}\: \\ $$$$\Rightarrow\mathrm{a}=\mathrm{13} \\ $$$$\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{13} \\ $$$$\mathrm{3z}'+\mathrm{y}=\mathrm{13} \\ $$$$\Rightarrow\mathrm{x}−\mathrm{z}'=\mathrm{0}\Rightarrow\mathrm{x}=\mathrm{z}' \\ $$$$\mathrm{2x}=\mathrm{z} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *