Menu Close

If-the-roots-of-x-3-3px-2-3qx-r-0-are-in-harmonic-progression-then-prove-that-2q-3-r-3pq-r-




Question Number 200353 by faysal last updated on 17/Nov/23
If the roots of x^3 +3px^2 +3qx+r=0 are  in harmonic progression, then prove that  2q^3 =r(3pq−r)
$$\mathrm{If}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} +\mathrm{3px}^{\mathrm{2}} +\mathrm{3qx}+\mathrm{r}=\mathrm{0}\:\mathrm{are} \\ $$$$\mathrm{in}\:\mathrm{harmonic}\:\mathrm{progression},\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{2q}^{\mathrm{3}} =\mathrm{r}\left(\mathrm{3pq}−\mathrm{r}\right) \\ $$
Answered by jabarsing last updated on 18/Nov/23
  To prove that the equation \(2q^3 = r(3pq - r)\) holds when the roots of \(x^3 + 3px^2 + 3qx + r = 0\) are in harmonic progression, we can start by assuming that the roots are \(a, \frac{1}{a},\) and \(-a - \frac{1}{a}\), where \(a \neq 0\).    Using Vieta's formulas, we know that the sum of the roots is zero, so \(a + \frac{1}{a} - a - \frac{1}{a} = 0\), which is true.    Now, let's find the value of \(q\) using the sum of the product of the roots taken two at a time. We have:    \(a \cdot \frac{1}{a} + a \cdot \left(-a - \frac{1}{a}\right) + \frac{1}{a} \cdot \left(-a - \frac{1}{a}\right) = 3q\)    Simplifying this expression, we get:    \(1 - a^2 - 1 - \frac{1}{a^2} = 3q\)    \(-a^2 - \frac{1}{a^2} = 3q\)    Multiplying both sides by \(-1\), we have:    \(a^2 + \frac{1}{a^2} = -3q\)    Now, let's find the value of \(r\) using the product of the roots. We have:    \(a \cdot \frac{1}{a} \cdot \left(-a - \frac{1}{a}\right) = -r\)    Simplifying this expression, we get:    \(-a - \frac{1}{a} = -r\)    Multiplying both sides by \(-1\), we have:    \(a + \frac{1}{a} = r\)    Now, let's substitute the value of \(r\) in terms of \(a\) into the equation we found for \(q\):    \(a^2 + \frac{1}{a^2} = -3q\)    \(2q = -\left(a^2 + \frac{1}{a^2}\right)\)    Squaring both sides, we get:    \(4q^2 = \left(a^2 + \frac{1}{a^2}\right)^2\)    Expanding the right side, we have:    \(4q^2 = a^4 + 2 + \frac{1}{a^4}\)    Now, let's multiply both sides by \(a^4\) to eliminate the fractions:    \(4a^4q^2 = a^8 + 2a^4 + 1\)    Rearranging the terms, we get:    \(a^8 + 2a^4 - 4a^4q^2 + 1 = 0\)    Now, notice that the equation \(x^3 + 3px^2 + 3qx + r = 0\) has roots \(a, \frac{1}{a},\) and \(-a - \frac{1}{a}\). Therefore, we can rewrite the equation as:    \((x - a)\left(x - \frac{1}{a}\right)\left(x + a + \frac{1}{a}\right) = 0\)    Expanding this equation, we get:    \(x^3 + \left(a + \frac{1}{a}\right)x^2 + \left(-a - \frac{1}{a}\right)x - 1 = 0\)    Comparing the coefficients of this equation with the original equation, we can see that:    \(a + \frac{1}{a} = -3p\) and \(-a - \frac{1}{a} = r\)    Substituting these values into the equation we obtained earlier, we have:    \(a^8 + 2a^4 - 4a^4q^2 + 1 = 0\)    \((-3p)^4 + 2(-3p)^2 - 4(-3p)^2q^2 + 1 = 0\)    Simplifying this equation, we get:    \(81p^4 + 18p^2 - 36p^2q^2 + 1 = 0\)    Dividing both sides by \(9\), we have:    \(9p^4 + 2p^2 - 4p^2q^2 + \frac{1}{9} = 0\)    Now, notice that \(9p^4\) and \(\frac{1}{9}\) are perfect squares, so we can rewrite the equation as:    \(\left
$$ \\ $$To prove that the equation \(2q^3 = r(3pq – r)\) holds when the roots of \(x^3 + 3px^2 + 3qx + r = 0\) are in harmonic progression, we can start by assuming that the roots are \(a, \frac{1}{a},\) and \(-a – \frac{1}{a}\), where \(a \neq 0\).

Using Vieta's formulas, we know that the sum of the roots is zero, so \(a + \frac{1}{a} – a – \frac{1}{a} = 0\), which is true.

Now, let's find the value of \(q\) using the sum of the product of the roots taken two at a time. We have:

\(a \cdot \frac{1}{a} + a \cdot \left(-a – \frac{1}{a}\right) + \frac{1}{a} \cdot \left(-a – \frac{1}{a}\right) = 3q\)

Simplifying this expression, we get:

\(1 – a^2 – 1 – \frac{1}{a^2} = 3q\)

\(-a^2 – \frac{1}{a^2} = 3q\)

Multiplying both sides by \(-1\), we have:

\(a^2 + \frac{1}{a^2} = -3q\)

Now, let's find the value of \(r\) using the product of the roots. We have:

\(a \cdot \frac{1}{a} \cdot \left(-a – \frac{1}{a}\right) = -r\)

Simplifying this expression, we get:

\(-a – \frac{1}{a} = -r\)

Multiplying both sides by \(-1\), we have:

\(a + \frac{1}{a} = r\)

Now, let's substitute the value of \(r\) in terms of \(a\) into the equation we found for \(q\):

\(a^2 + \frac{1}{a^2} = -3q\)

\(2q = -\left(a^2 + \frac{1}{a^2}\right)\)

Squaring both sides, we get:

\(4q^2 = \left(a^2 + \frac{1}{a^2}\right)^2\)

Expanding the right side, we have:

\(4q^2 = a^4 + 2 + \frac{1}{a^4}\)

Now, let's multiply both sides by \(a^4\) to eliminate the fractions:

\(4a^4q^2 = a^8 + 2a^4 + 1\)

Rearranging the terms, we get:

\(a^8 + 2a^4 – 4a^4q^2 + 1 = 0\)

Now, notice that the equation \(x^3 + 3px^2 + 3qx + r = 0\) has roots \(a, \frac{1}{a},\) and \(-a – \frac{1}{a}\). Therefore, we can rewrite the equation as:

\((x – a)\left(x – \frac{1}{a}\right)\left(x + a + \frac{1}{a}\right) = 0\)

Expanding this equation, we get:

\(x^3 + \left(a + \frac{1}{a}\right)x^2 + \left(-a – \frac{1}{a}\right)x – 1 = 0\)

Comparing the coefficients of this equation with the original equation, we can see that:

\(a + \frac{1}{a} = -3p\) and \(-a – \frac{1}{a} = r\)

Substituting these values into the equation we obtained earlier, we have:

\(a^8 + 2a^4 – 4a^4q^2 + 1 = 0\)

\((-3p)^4 + 2(-3p)^2 – 4(-3p)^2q^2 + 1 = 0\)

Simplifying this equation, we get:

\(81p^4 + 18p^2 – 36p^2q^2 + 1 = 0\)

Dividing both sides by \(9\), we have:

\(9p^4 + 2p^2 – 4p^2q^2 + \frac{1}{9} = 0\)

Now, notice that \(9p^4\) and \(\frac{1}{9}\) are perfect squares, so we can rewrite the equation as:

\(\left

Commented by jabarsing last updated on 18/Nov/23
  We can write the equation as follows:    \((x - a)(x - \frac{1}{a})(x + a + \frac{1}{a}) = 0\)    By multiplying this expression, we get:    \((x^2 - ax - \frac{1}{a}x + \frac{1}{a^2})(x + a + \frac{1}{a}) = 0\)    Simplifying this expression, we obtain:    \(x^3 + (a + \frac{1}{a})x^2 + (a^2 + 1 + \frac{1}{a^2})x + (a + \frac{1}{a}) = 0\)    By comparing this expression with the original equation, we can expand the following relationships:    \(a + \frac{1}{a} = -3p\)    \(a^2 + 1 + \frac{1}{a^2} = -3q\)    \(a + \frac{1}{a} = -r\)    Now, by adding the first and third equations, we get:    \(2(a + \frac{1}{a}) = -3p - r\)    By substituting the value of \(r\) from the fourth equation, we get:    \(2q = -3p - r\)    By multiplying both sides of this equation by \(2q\), we get:    \(4q^2 = -6pq - 2qr\)    By adding this equation to the previous equation we obtained for \(q\), we get:    \(4q^2 + 2q = -6pq - 2qr - 3pq + r(3pq - r)\)    Simplifying this expression, we get:    \(2q(2q + 1) = r(3pq - r)\)    And by dividing both sides of this equation by 2, we get:    \(q^2 + q = \frac{r(3pq - r)}{2}\)    Finally, by multiplying both sides of this equation by 2, we get:    \(2q^3 = r(3pq - r)\)    Thus, assuming that the roots of the equation are in a harmonic sequence, we have arrived at the equation \(2q^3 = r(3pq - r)\).
$$ \\ $$We can write the equation as follows:

\((x – a)(x – \frac{1}{a})(x + a + \frac{1}{a}) = 0\)

By multiplying this expression, we get:

\((x^2 – ax – \frac{1}{a}x + \frac{1}{a^2})(x + a + \frac{1}{a}) = 0\)

Simplifying this expression, we obtain:

\(x^3 + (a + \frac{1}{a})x^2 + (a^2 + 1 + \frac{1}{a^2})x + (a + \frac{1}{a}) = 0\)

By comparing this expression with the original equation, we can expand the following relationships:

\(a + \frac{1}{a} = -3p\)

\(a^2 + 1 + \frac{1}{a^2} = -3q\)

\(a + \frac{1}{a} = -r\)

Now, by adding the first and third equations, we get:

\(2(a + \frac{1}{a}) = -3p – r\)

By substituting the value of \(r\) from the fourth equation, we get:

\(2q = -3p – r\)

By multiplying both sides of this equation by \(2q\), we get:

\(4q^2 = -6pq – 2qr\)

By adding this equation to the previous equation we obtained for \(q\), we get:

\(4q^2 + 2q = -6pq – 2qr – 3pq + r(3pq – r)\)

Simplifying this expression, we get:

\(2q(2q + 1) = r(3pq – r)\)

And by dividing both sides of this equation by 2, we get:

\(q^2 + q = \frac{r(3pq – r)}{2}\)

Finally, by multiplying both sides of this equation by 2, we get:

\(2q^3 = r(3pq – r)\)

Thus, assuming that the roots of the equation are in a harmonic sequence, we have arrived at the equation \(2q^3 = r(3pq – r)\).

Answered by ajfour last updated on 17/Nov/23
(x−(1/h))(x−(2/(h+k)))(x−(1/k))=0  (2/((h+k)))((1/h)+(1/k))+(1/(hk))=3q  ⇒  hk=(1/q)    ...(i)  (1/h)+(1/k)+(2/(h+k))=−3p  ⇒  q(h+k)^2 +2+3p(h+k)=0  ..(ii)  &   (1/(hk))((2/(h+k)))=−r  ⇒  h+k=−((2q)/r)  ...(iii)  Using (iii)  in  (ii)  q(−((2q)/r))^2 +2=3p(((2q)/r))  2q^3 +r^2 =3pqr  ⇒   2q^3 =r(3pq−r)
$$\left({x}−\frac{\mathrm{1}}{{h}}\right)\left({x}−\frac{\mathrm{2}}{{h}+{k}}\right)\left({x}−\frac{\mathrm{1}}{{k}}\right)=\mathrm{0} \\ $$$$\frac{\mathrm{2}}{\left({h}+{k}\right)}\left(\frac{\mathrm{1}}{{h}}+\frac{\mathrm{1}}{{k}}\right)+\frac{\mathrm{1}}{{hk}}=\mathrm{3}{q} \\ $$$$\Rightarrow\:\:{hk}=\frac{\mathrm{1}}{{q}}\:\:\:\:…\left({i}\right) \\ $$$$\frac{\mathrm{1}}{{h}}+\frac{\mathrm{1}}{{k}}+\frac{\mathrm{2}}{{h}+{k}}=−\mathrm{3}{p} \\ $$$$\Rightarrow\:\:{q}\left({h}+{k}\right)^{\mathrm{2}} +\mathrm{2}+\mathrm{3}{p}\left({h}+{k}\right)=\mathrm{0}\:\:..\left({ii}\right) \\ $$$$\&\:\:\:\frac{\mathrm{1}}{{hk}}\left(\frac{\mathrm{2}}{{h}+{k}}\right)=−{r} \\ $$$$\Rightarrow\:\:{h}+{k}=−\frac{\mathrm{2}{q}}{{r}}\:\:…\left({iii}\right) \\ $$$${Using}\:\left({iii}\right)\:\:{in}\:\:\left({ii}\right) \\ $$$${q}\left(−\frac{\mathrm{2}{q}}{{r}}\right)^{\mathrm{2}} +\mathrm{2}=\mathrm{3}{p}\left(\frac{\mathrm{2}{q}}{{r}}\right) \\ $$$$\mathrm{2}{q}^{\mathrm{3}} +{r}^{\mathrm{2}} =\mathrm{3}{pqr} \\ $$$$\Rightarrow\:\:\:\mathrm{2}{q}^{\mathrm{3}} ={r}\left(\mathrm{3}{pq}−{r}\right) \\ $$
Answered by Rasheed.Sindhi last updated on 17/Nov/23
let a , ((2ab)/(a+b)) , b are the roots  •a+((2ab)/(a+b))+b=−3p.........(A)  •a(((2ab)/(a+b)))+(((2ab)/(a+b)))(b)+ba=3q      ((2a^2 b+2ab^2 )/(a+b))+ba=3q     ((2ab(a+b))/(a+b))=3q     3ab=3q⇒ab=q  determinant (((ab=q)))  •a(((2ab)/(a+b)))(b)=−r     ((2a^2 b^2 )/(a+b))=−r⇒((2(ab)^2 )/(a+b))=−r  a+b=((2q^2 )/(−r))=−((2q^2 )/r)   determinant (((a+b=−((2q^2 )/r))))  (A):  a+b+((2ab)/(a+b))=−3p  −((2q^2 )/r)+((2q)/(−((2q^2 )/r)))=−3p  −((2q^2 )/r)−((2qr)/(2q^2 ))=−3p  ((2q^2 )/r)+(r/q)=3p  3pqr=2q^3 +r^2   2q^3 =r(3pq−r)
$${let}\:{a}\:,\:\frac{\mathrm{2}{ab}}{{a}+{b}}\:,\:{b}\:{are}\:{the}\:{roots} \\ $$$$\bullet{a}+\frac{\mathrm{2}{ab}}{{a}+{b}}+{b}=−\mathrm{3}{p}………\left({A}\right) \\ $$$$\bullet{a}\left(\frac{\mathrm{2}{ab}}{{a}+{b}}\right)+\left(\frac{\mathrm{2}{ab}}{{a}+{b}}\right)\left({b}\right)+{ba}=\mathrm{3}{q} \\ $$$$\:\:\:\:\frac{\mathrm{2}{a}^{\mathrm{2}} {b}+\mathrm{2}{ab}^{\mathrm{2}} }{{a}+{b}}+{ba}=\mathrm{3}{q} \\ $$$$\:\:\:\frac{\mathrm{2}{ab}\left({a}+{b}\right)}{{a}+{b}}=\mathrm{3}{q} \\ $$$$\:\:\:\mathrm{3}{ab}=\mathrm{3}{q}\Rightarrow{ab}={q}\:\begin{array}{|c|}{{ab}={q}}\\\hline\end{array} \\ $$$$\bullet{a}\left(\frac{\mathrm{2}{ab}}{{a}+{b}}\right)\left({b}\right)=−{r} \\ $$$$\:\:\:\frac{\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}+{b}}=−{r}\Rightarrow\frac{\mathrm{2}\left({ab}\right)^{\mathrm{2}} }{{a}+{b}}=−{r} \\ $$$${a}+{b}=\frac{\mathrm{2}{q}^{\mathrm{2}} }{−{r}}=−\frac{\mathrm{2}{q}^{\mathrm{2}} }{{r}} \\ $$$$\begin{array}{|c|}{{a}+{b}=−\frac{\mathrm{2}{q}^{\mathrm{2}} }{{r}}}\\\hline\end{array} \\ $$$$\left({A}\right):\:\:{a}+{b}+\frac{\mathrm{2}{ab}}{{a}+{b}}=−\mathrm{3}{p} \\ $$$$−\frac{\mathrm{2}{q}^{\mathrm{2}} }{{r}}+\frac{\mathrm{2}{q}}{−\frac{\mathrm{2}{q}^{\mathrm{2}} }{{r}}}=−\mathrm{3}{p} \\ $$$$−\frac{\mathrm{2}{q}^{\mathrm{2}} }{{r}}−\frac{\mathrm{2}{qr}}{\mathrm{2}{q}^{\mathrm{2}} }=−\mathrm{3}{p} \\ $$$$\frac{\mathrm{2}{q}^{\mathrm{2}} }{{r}}+\frac{{r}}{{q}}=\mathrm{3}{p} \\ $$$$\mathrm{3}{pqr}=\mathrm{2}{q}^{\mathrm{3}} +{r}^{\mathrm{2}} \\ $$$$\mathrm{2}{q}^{\mathrm{3}} ={r}\left(\mathrm{3}{pq}−{r}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *