Menu Close

Question-200377




Question Number 200377 by mr W last updated on 18/Nov/23
Commented by mr W last updated on 18/Nov/23
the side lengths of the hexagon are  given. find x+y+z=?
$${the}\:{side}\:{lengths}\:{of}\:{the}\:{hexagon}\:{are} \\ $$$${given}.\:{find}\:{x}+{y}+{z}=? \\ $$
Answered by mr W last updated on 18/Nov/23
Commented by mr W last updated on 18/Nov/23
Commented by mr W last updated on 18/Nov/23
red diagonal =z  blue diagonal =y  green diagonal =x
$${red}\:{diagonal}\:={z} \\ $$$${blue}\:{diagonal}\:={y} \\ $$$${green}\:{diagonal}\:={x} \\ $$
Commented by mr W last updated on 18/Nov/23
applying Ptolemy′s theorem  to □ADEF:  z^2 =81^2 +81y   ...(i)  to □ACDF:  y^2 =81^2 +xz   ...(ii)  to □ABCD:  xz=31×81+81y   ...(iii)    from (ii) & (iii):  y^2 −81y−81×112=0  ⇒y=((81+9×23)/2)=144   ✓  from (i):  z=(√(81^2 +81×144))=135 ✓  from (ii):  x=((y^2 −81^2 )/z)=((144^2 −81^2 )/(135))=105 ✓  ⇒x+y+z=105+144+135=384 ✓
$${applying}\:{Ptolemy}'{s}\:{theorem} \\ $$$${to}\:\Box{ADEF}: \\ $$$${z}^{\mathrm{2}} =\mathrm{81}^{\mathrm{2}} +\mathrm{81}{y}\:\:\:…\left({i}\right) \\ $$$${to}\:\Box{ACDF}: \\ $$$${y}^{\mathrm{2}} =\mathrm{81}^{\mathrm{2}} +{xz}\:\:\:…\left({ii}\right) \\ $$$${to}\:\Box{ABCD}: \\ $$$${xz}=\mathrm{31}×\mathrm{81}+\mathrm{81}{y}\:\:\:…\left({iii}\right) \\ $$$$ \\ $$$${from}\:\left({ii}\right)\:\&\:\left({iii}\right): \\ $$$${y}^{\mathrm{2}} −\mathrm{81}{y}−\mathrm{81}×\mathrm{112}=\mathrm{0} \\ $$$$\Rightarrow{y}=\frac{\mathrm{81}+\mathrm{9}×\mathrm{23}}{\mathrm{2}}=\mathrm{144}\:\:\:\checkmark \\ $$$${from}\:\left({i}\right): \\ $$$${z}=\sqrt{\mathrm{81}^{\mathrm{2}} +\mathrm{81}×\mathrm{144}}=\mathrm{135}\:\checkmark \\ $$$${from}\:\left({ii}\right): \\ $$$${x}=\frac{{y}^{\mathrm{2}} −\mathrm{81}^{\mathrm{2}} }{{z}}=\frac{\mathrm{144}^{\mathrm{2}} −\mathrm{81}^{\mathrm{2}} }{\mathrm{135}}=\mathrm{105}\:\checkmark \\ $$$$\Rightarrow{x}+{y}+{z}=\mathrm{105}+\mathrm{144}+\mathrm{135}=\mathrm{384}\:\checkmark \\ $$
Commented by ajfour last updated on 18/Nov/23
i see, thank you sir.
$${i}\:{see},\:{thank}\:{you}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *