Question Number 200413 by Mingma last updated on 18/Nov/23
Commented by Mingma last updated on 18/Nov/23
Evaluate!
Answered by witcher3 last updated on 18/Nov/23
$$\:\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\leqslant\mathrm{sin}\left(\mathrm{x}\right)\leqslant\mathrm{x} \\ $$$$ \\ $$$$\left(\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}\right)_{=\mathrm{v}_{\mathrm{n}} } ^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{n}}} \leqslant\left(\underset{\mathrm{k}=\mathrm{2}} {\overset{\mathrm{n}} {\sum}}\mathrm{sin}\left(\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}\right)\right)^{\frac{\mathrm{1}}{\mathrm{n}}} \leqslant\left(\underset{\mathrm{k}=\mathrm{2}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} =\mathrm{u}_{\mathrm{n}} \\ $$$$\mathrm{ln}\left(\mathrm{u}_{\mathrm{n}} \right)=\frac{\mathrm{1}}{\mathrm{n}}\mathrm{ln}\left(\underset{\mathrm{k}=\mathrm{2}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}\right)\leqslant\frac{\mathrm{1}}{\mathrm{n}}\mathrm{ln}\left(\mathrm{nln}\left(\mathrm{n}\right)\right)\rightarrow\mathrm{0} \\ $$$$\mathrm{ln}\left(\mathrm{v}_{\mathrm{n}} \right)=\frac{\mathrm{1}}{\mathrm{n}}\mathrm{ln}\left(\underset{\mathrm{k}\geqslant\mathrm{2}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}\right)^{\mathrm{3}} \right) \\ $$$$\underset{\mathrm{k}\geqslant\mathrm{2}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}\right)^{\mathrm{3}} \geqslant\underset{\mathrm{k}=\mathrm{2}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{5}}{\mathrm{6}}\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}…\left(\mathrm{E}\right) \\ $$$$\exists\mathrm{n}\in\mathbb{N}\:\forall\mathrm{n}\geqslant\mathrm{N}\:\underset{\mathrm{k}=\mathrm{2}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}.\frac{\mathrm{5}}{\mathrm{6}}\geqslant\mathrm{1} \\ $$$$\mathrm{since}\:\underset{\mathrm{k}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}\:\mathrm{diverge}\:\mathrm{in}\:+\infty \\ $$$$\mathrm{E}\Rightarrow\underset{\mathrm{k}\geqslant\mathrm{2}} {\overset{\mathrm{n}} {\sum}}\left(\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}\right)^{\mathrm{3}} \right)\geqslant\mathrm{1},\forall\mathrm{n}\geqslant\mathrm{N} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{n}}\mathrm{ln}\left(\underset{\mathrm{k}\geqslant\mathrm{2}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{lnk}}{\mathrm{k}}−\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{lnk}}{\mathrm{k}}\right)^{\mathrm{3}} \right)\geqslant\mathrm{0},\forall\mathrm{n}\geqslant\mathrm{N} \\ $$$$\Rightarrow\forall\mathrm{n}\geqslant\mathrm{N} \\ $$$$ \\ $$$$\mathrm{0}\leqslant\frac{\mathrm{1}}{\mathrm{n}}\mathrm{ln}\left(\Sigma\mathrm{sin}\left(\frac{\mathrm{lnk}}{\mathrm{k}}\right)\right)^{} \leqslant\mathrm{ln}\left(\mathrm{u}_{\mathrm{n}} \right)\rightarrow\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{n}}\mathrm{ln}\left(\Sigma\mathrm{sin}\left(\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}\right)\right)\rightarrow\mathrm{0} \\ $$$$\Leftrightarrow\left(\underset{\mathrm{k}\geqslant\mathrm{2}} {\sum}\mathrm{sin}\left(\frac{\mathrm{ln}\left(\mathrm{k}\right)}{\mathrm{k}}\right)\right)^{\frac{\mathrm{1}}{\mathrm{n}}} \rightarrow\mathrm{1} \\ $$
Commented by Mingma last updated on 19/Nov/23
Perfect