Menu Close

0-pi-2-dx-1-tan-2023-x-




Question Number 200464 by Frix last updated on 19/Nov/23
∫_0 ^(π/2) (dx/(1+tan^(2023)  x))=???????
π20dx1+tan2023x=???????
Answered by som(math1967) last updated on 19/Nov/23
 I=∫_0 ^(π/2) ((cos^(2023) xdx)/(sin^(2023) x+cos^(2023) x))   2I=∫_0 ^(π/2) ((cos^(2023) ((π/2)−x)+cos^(2023) xdx)/(sin^(2023) ((π/2)−x)+cos^(2023) ((π/2)−x)))  2I=[x]_0 ^(π/2) ⇒I=(π/4)
I=π20cos2023xdxsin2023x+cos2023x2I=π20cos2023(π2x)+cos2023xdxsin2023(π2x)+cos2023(π2x)2I=[x]0π2I=π4
Commented by Frix last updated on 21/Nov/23
Yes! Thank you!

Leave a Reply

Your email address will not be published. Required fields are marked *